Category Archives: Apache AH-64

E-Bomb – Direct Energy Warfare

6th Generation Aircraft - Airforces to End the Desire for Pilots

The rules of battle have changed over the entirety of military history. Tools such as technology, strategy, tactics and weapons have been the principal elements determining what kind of rules apply to the battlefield. What can consititute to a sixth generation fighter jets – Thats the question I am asking myself since past week. Although it might be too early to think of these questions, when even planes like JSf, PAK-FA or F-22 are not even fully opertional. The contemporary military rivalry is driven mostly by the ongoing military technical revolution. In particular, the weapons used on the future battlefield will play an important role in military affairs. Which weapons can play a key role in the future? I will try not to be too technical, such that the article is applicable to general public as well, however, I have included the research papers and appropriate links for those intending to explore more about E-Bombs or Electromagnetic Weapon Systems.

Sixth generation jet fighters are currently conceptual and expected to enter service in the United States Air Force and United States Navy in 2025-2030 timeframe. The technological characteristics may include the combination of fifth generation aircraft capabilities with unmanned capibility, unrefueled combat radius greater than 1000 nm and Direct Energy Weapon. It is latter which is a subject of this article. One form of this energy is Electronic Bomb (E-Bomb). This article aim to explore the technical aspects and potential capabilities of this type of bomb, target measurements and its comparison with other form of electromagnectic weaponry.

Research has shown that it is possible to develop such kind of device. Directed Energy research originated with research work done to determine the impact to important military systems operating in harsh electromagnetic environments. One of the most threatening and pervasive of all electromagnetic threats is that due to electromagnetic pulse.

These pulses can burst of electromagnetic radiation that results from an explosion (usually from the detonation of a nuclear weapon) and/or a suddenly fluctuating magnetic field. However, its not only the nuclear weapon who generates these pulses, Non-nuclear electromagnetic pulse (NNEMP) is an electromagnetic pulse generated without use of nuclear weapons. There are a number of devices that can achieve this objective, ranging from a large low-inductance capacitor bank discharged into a single-loop antenna or a microwave generator to an explosively pumped flux compression generator. To achieve the frequency characteristics of the pulse needed for optimal coupling into the target, wave-shaping circuits and/or microwave generators are added between the pulse source and the antenna. A vacuum tube particularly suitable for microwave conversion of high energy pulses is the vircator. These HEMP induced stresses can damage or severely disrupt some electronic systems, which are sensitive to transient disturbance. Significant potential damaging effects can occur at long ranges to virtually all systems located within line-of-sight of the detonation point. Thus it is feasible to say, that NNEMP generators can be carried as a payload of bombs and cruise missiles, allowing construction of electromagnetic bombs with diminished mechanical, thermal and ionizing radiation effects and without the political consequences of deploying nuclear weapons.

The fact that an electromagnetic pulse is produced by a nuclear explosion was known since the earliest days of nuclear weapons testing, but the magnitude of the EMP and the significance of its effects were not realized for some time. As a result of the test, a very short but extremely intense electromagnetic pulse was observed. This pulse propagated away from its source with a decreasing intensity, which is also to be expected according to the theory of electromagnetism.

According to the CBS reports dated March 2003 stated the application of experimental EM Pulse:

The U.S. Air Force hit Iraqi TV with an experimental electromagnetic pulse device called the “E-Bomb” in an attempt to knock it off the air and shut down Saddam Hussein’s propaganda machine. The highly classified bomb created a brief pulse of microwaves powerful enough to fry computers, blind radar, silence radios, trigger crippling power outages and disable the electronic ignitions in vehicles and aircraft. Officially, the Pentagon does not acknowledge the weapon’s existence.

Direct Energy Warfare

Military action involving the use of directed-energy weapons, devices, and countermeasures to either cause direct damage or destruction of enemy equipment, facilities, and personnel, or to determine, exploit, reduce, or prevent hostile use of the electromagnetic spectrum through damage, destruction, and disruption. The defensive part of Electronic Warfare includes the offensive actions such as preventing the enemy’s use of the electromagnetic spectrum through counter measures such as damaging, disrupting, or destructing the enemy’s electromagnetic capability. Such weaponry (DEW) is an evolving addition to the EW.

Characteristics of Direct Energy Weapons

The most common characteristics of the direct energy weapons is that they attack at the Speed of Light. This pose some advantage over conventional weaponry, This helps in defeating targets
such as theater and ballistic missiles before they can deploy defense-saturating sub-munitions. Another advantage of such weapons is that they can be used against multiple targets at the same time. The direct energy weapons are classified into four catagories; High Power Microwave (HPM), Charged Particle Beams (CPB), Neutral Particle Beams (NPB) and High Energy Laser (HEL). It is the latter which is highly potential for military applications (both stratagic and tactical missions). However, for E-Bomb it is HPM is a base. But offcourse when compared to Laser technology, the microwave technology lags in terms of research. HPM – use electromagnetic radiation to deliver heat, mechanical, or electrical energy to a target to cause various, sometimes very subtle, effects. When used against equipment, directed electromagnetic energy weapons can operate similarly to omnidirectional electromagnetic pulse (EMP) devices, by inducing destructive voltage within electronic wiring. The difference is that they are directional and can be focused on a specific target using a parabolic reflector. High-energy radio frequency weapons (HERF) or high-power radio frequency weapons (HPRF) use high intensity radio waves to disrupt electronics. However, High and low power, Pulsed Microwave devices use low-frequency microwave radiation which can be made to closely mimic and interact with normal human brain waves having similar frequencies. Although belong to the same family of technology, the E-Bomb deployment differes from that of HPM.

Potential for Aircraft Operations

Scleher, D. Curtis in Electronic warfare in the information age, has defined the potential of these kind of weapons for Aircraft Operations. DEWs have great potential for aircraft operations since crews can enhance their own survivability in the battlefield, where the aircrafts are susceptible and vulnerable to missile threats, by protecting themselves with electromagnetic shields. In such environment, DEW systems may prevent the aircraft from threats by decreasing the detection and targeting capability of enemy. They may also aid in hit avoidance by deflecting, blinding, or causing the incoming missile to break lock and finally, where necessary, to destroy the missile itself before it reaches its target. An additional approach might be to defeat the fusing system of the incoming missile. However, when deploying these bombs, getting the projectile successfully right is the key, such that useful damage can be produced. Further information about the deployment of these DEWs can be accessed from Electronic warfare in the information age. By this stage one difference between HPM and E-bomb is apparanet, despite belonging to same technological family, and this difference is their deployment. HEMP – High Altitude Electromagnetic Pulse is not a directed energy weapon. The reason why HEMP is defined as an electromagnetic weapon is that it produces similar effects in electromagnetic spectrum and can cause similar impacts on electronic devices. The potential effects of a designed HPM weapon strongly depends on the electromagnetic properties of the target. Since it is difficult to get the required intelligence, the complexity of real systems poses technical difficulties. A typical HPM weapon system basically includes a prime source that generates the intended power, an RF generator, a system that shapes and forms the wave into the intended form, a waveguide through which the generated wave travel, an antenna that propagated the wave, and the control unit that manages all the steps.

AGM-154 Joint Standoff Weapon l

Delivery system considerations for E-bombs are very important. The massed application of such electromagnetic weapons in the opening phase of an electronic battle delivered at the proper instant or location can quickly lead the superiority in the electromagnetic spectrum. This package might mean a major shift from physically lethal weaponry to electronically lethal attacks (via e-bombs) as a preferred mode of operation. Potential platforms for such weapons delivery systems are AGM-154 JSOW (Joint Stand Off Weapon) glidebomb (shown above) and the B-2 bomber (shown below). The attractiveness of glidebombs delivering HPM warheads is that the weapon can be released from outside the effective radius of target air defenses, minimizing the risk to the launch aircraft, which can stay clear of the bomb’s electromagnetic effects.

B2-Bomber refueling

Another delivery method of e-bomb may be the use of UAVs. The technology of UAVs is still developing and partly immature; however, improvements can be expected in the next decade.

The e-bomb targets mission essential electronic systems such as the computers used in data processing systems, communications systems, displays, industrial control applications, including road and rail signaling, and those embedded in military equipment, such as signal processors, electronic flight controls and digital engine control systems. I must point out that when e-bomb outputs are too weak to destroy these systems but strong enough to disrupt their operations, system performance can be degraded. The relation between the altitude (shown below) where the e-bomb is detonated and a representation of the lethality range. Target information (to include location and vulnerability) becomes an important issue.

E-Bomb Footprint: Source <a href="">Carlo Kopp</a>

E-Bomb – Science Fiction or a Fact?

Sor, can this hypothetical e-bomb be a significant weapon for the future battlefield? Theoratically, the military advantage obtainable with e-bombs is related mostly to their operational significance. Will future battlefields will be won by the countries that best manage the revolution in military affairs or technological revolution? If latter is the case, then one has to remind himself that technology is not a winner on its own, but it has been, and it will continue to be, a critical enabler. If everything else is equal, the side with better technology will win. Finally, can the country that first develops this new weapon have a significant and exploitable military advantage against other powers? Is is feasible for a nation to invest in this kind of bomb ? – The Debate Continues

As I have mentioned earlier, this piece is not research but infact just collection of some work, to explore the potential of EM technology in modern warfare as well as extending our previous discussion of Electronic Warfare For further reading about the subject I strongly suggest to read the following researches

Kopp, C. 1993. A doctrine for the use of electromagnetic pulse bombs. Air Power Studies Centre. Paper No. 15.
Kopp, C. 1996. An introduction to the technical and operational aspects of the electromagnetic bomb. Air Power Studies Centre. Paper No. 50.
Kopp, C. 2006. Directed Energy Weapons-Part 1. Defense Today May/June Publication.
Mazarr, Michael J. 1993. Military Technical Revolution-A Structural Framework. Center for Strategic and International Studies. Washington, D.C.
Scleher, D. Curtis. 1999. Electronic warfare in the information age. Boston: Artech House.


Leave a comment

Filed under 20th Tactical Fighter Wing, Aerobatics, AGm-113 Hellfire, AGM-154 JSOW, Air Defence, ALQ-214 Radio Frequency Countermeasures, Anti Aircraft Artillery, Apache AH-64, Artificial Intelligence, ASN Technology, ASN Technology, ASN-229A UAV, ATAK, B2-Bomber, Black Ops, Boeing, Charged Particle Beams, Cold War, Dassault Mirage, Direct Energy Warfare, Direct Energy Weapons, Drone Technology, Drones, EB-66 Bomber, EF-111 Ravens, Electromagnectic Pulses, Electromagnetic Spectrum, Electronic Bomb, Electronic Support measures, Electronic Warfare, Eurofighter Typhoon, Fifth Generation Combat Aircraft, glidebomb, Global Aviation, High Energy Laser, High Power Microwave, HPM, Improvised Explosive Device, Information Operations, Joint Stand Off Weapon, Lasers Technology, Milimeter Wave Radar, NASA, NATO, Non-nuclear electromagnetic pulse, omnidirectional electromagnetic pulse, Predator, Radars, Radio Frequency, raytheon, Robotic Wars, Robotic Weapons, Robots, SD-10 Missile, Secretary of State, Sixth Generation Fighter Jet, Sniper Elite, Sukhoi PAK-FA, Sukhoi Su-33, surface-to-air missile, Terror Free Tomorrow, U.S Drone Technology, U.S Marines, UAV, Vietnam War, War on Terror, WMD

T-129: New Kid in a Block of Attack Helicopters

T-129 Attack Helicopter

Vey recently Turkey has increased its order for the T129 (shown above) attack helicopter to 60 aircraft, with prime contractor Turkish Aerospace Industries to deliver nine newly ordered examples by mid-2012. When I saw this machine first time, it reminded good old Apache. Is this rotorcraft the Apache for third world countries? Well I don’t know, they might look the same, but they are not same. I am writing this post to prove myself wrong. That T-129 is not cheaper Apache, but infact it has or will have its own place in the market of attack helicopters. Before I proceed I must remind you, that it is same 129 whose prototype crashed on the afternoon of 19 March during a test flight. Early indications point to a loss of power to the tail rotor while flying at an elevation of 1,500ft (455m) near Verbania in northern Italy. AgustaWestland is to make two T129 prototypes in Italy, after which manufacture will shift to its Turkish partner TAI. TAI general director Muharrem Dortkasli says the first T129 ATAK will be handed over to the Turkish armed forces in the third quarter of 2013. Turkey will be responsible for international marketing and sales of the design, and industry sources say several countries are already evaluating the product, including Jordan and Pakistan.

The T129 is a formidable, new, highly powerful and capable all-weather day and night multi-role attack helicopter which is being developed in cooperation by AgustaWestland, Aselsan and TAI (Turkish Aerospace Industries) for Turkey and other export markets. It is based upon the AW129 and its predecessor, the battle-proven A129 Mangusta platform. High weapon payload, excellent performance for ‘hot and high’ conditions and range and endurance of up to 3 hours are enabled by state-of-the-art LHTEC-T800 engines, making the T129 a critical multi-role resource for attack and deterrent operations. Low signature and agility ensure maximum stealth, and a significant weapons payload enable the T129 to operate in the most hostile of battlefield environments as well as in confined areas typical of current military scenarios. Latest technology features include Integrated Aircraft Survivability Equipment which delivers vital survivability tools and integrated mission management utilising an advanced FLIR sighting system, Helmet Mounted Display and Mission computers. High survivability enhanced by ballistic tolerance and crashworthiness is a fundamental design feature. The T129 benefits from the high field supportability necessary for an aircraft needing to operate in remote areas with the minimum logistical support.

Both helciopters resembles closely, however, AH-64’s (shown below) main rotor blade (BERP) is its distinguishing features, Unfortunatly T-129 offers half of Apache’s Maximum Takeoff Weight (with 5,000kg) compared to Apache’s 10,000kg. Another distinguishing feature is T-129’s 5 main rotor blades. The T-129 has several key improvements over the original A129 inline with the requirements of the Turkish Army. he T-129 will carry 12 Roketsan-developed UMTAS anti-tank missiles (Turkish indigenous development similar to Hellfire II) and it will use the more powerful LHTEC T800 (CTS800-4) engine.

Boeing AH-64D Apache Longbow

The AH-64 is designed to endure front-line environments and to operate during the day or night and in adverse weather using avionics, such as the Target Acquisition and Designation System, Pilot Night Vision System (TADS/PNVS), passive infrared countermeasures, GPS, and the IHADSS. The AH-64 is adaptable to numerous different roles within its context as Close Combat Attack (CCA), and has a customizable weapons loadout for the role desired.In addition to the 30-mm M230E1 Chain Gun, the Apache carries a range of external stores on its stub-wing pylons, typically a mixture of AGM-114 Hellfire anti-tank missiles, and Hydra 70 general-purpose unguided 70 mm (2.76 in) rockets.

Although both helicopters offers a capability to carry sidewinder and AIM-92 Stinger, what is missing from T-129 is Longbow Radar, what I consider a key to Apache operations. The lessons of the Gulf War, and the evolving battlefield air defence threat, created the context in which the digital AH-64D (Longbow Version) Apache was conceived. An optional fit to its baseline configuration is the Longbow weapon system, comprising the Northrop-Grumman (previously Westinghouse) AN/APG-78 Longbow mast mounted Fire Control Radar (FCR), and a Lockheed-Martin AN/APR-48 Radar Frequency Interferometer (RFI) package, both designed for all weather operation through precipitation and battlefield obscurants. The Longbow weapon system supports the AGM-114L active radar guided missile, operating in the same millimetric band as the radar.

T-129 A Kid about to born

The Longbow radar is a very low peak power, millimetric band system, with extremely low sidelobes by virtue of a very large relative antenna size. The low emitted power, extremely narrow pencil beam mainlobe, and undisclosed LPI modulation features provide a system with a range of the order of 10 km in clear conditions, which is near to undetectable by established RWR technology. Only a highly sensitive channelised ESM receiver with a high gain antenna and low noise receivers can reliably detect such a signal, under optimal antenna pointing conditions. The choice of millimetric band means that atmospheric water vapour and oxygen resonance losses rapidly soak up the signal, which is also out of the frequency band coverage of most RWRs. The radar will track up to 128 targets and prioritise the top 16. The radar employs both real beam mapping and Moving Target Indicator (MTI) techniques, to provide the automatic detection, tracking and non-cooperative identification of surface targets, with a secondary capability against low flying aircraft. Target identification algorithms in the radar’s software look at the shape of possible targets, and their Doppler signatures, to identify aircraft, helicopters, SPAAGs, SAM systems, tanks, AFVs, trucks and other wheeled vehicles. The capability exists to identify stationary targets through radar transparent camouflage netting and foliage. Real beam video and synthetic imagery can be displayed.

The provision of a highly automated weapon system with basic sensor fusion is unique at to the Apache Longbow, and provides clearly unprecedented lethality in comparison with helicopters using only thermal imaging sights and laser guided missiles. Such systems are limited to engaging one target at a time, unlike the Apache Longbow which can engage many targets concurrently. Howver I must mention here T-129’s advanced milimeter wave radar, claimed to be similar to Longbow and IAI/ELTA radars. Mast radar, similar to that of Apache Longbow but based on IAI/ELTA’s (Israel) surveillance and targeting radar with SAR and ISAR capability, has been added on the top of the rotor. The radar can identify land and sea targets from at least 30 kilometres. I am unsure about the technical details of T-129 radar, but there is something comparable to Longbow abilities is surprise to me.

Looking at the airbrone FLIR T-129 incorporates ASELFLIR-300T is a multi-sensor electro-optical targeting and surveillance system. ASELFLIR-300T fulfills multiple mission requirements including; Pilotage / Navigation, Surveillance, Target Search, Track, Locate and Designation. Having a flexible hardware and software design architecture, the system can be used on different platforms ranging from rotary, fixed wing and unmanned air vehicles to naval ships. Pilotage / Navigation, Surveillance, Target Search, Track, Locate and Designation. ASELFLIR-300T System includes a High Resolution Infra Red (IR) Camera, a Laser Rangefinder / Designator (LRF/D), a Laser Spot Tracker (LST), a Color TV Camera and a Color Spotter Camera. The system consists of the following Weapons Replaceable Assemblies (WRAs); Turret Unit (TU), Electronics Unit (EU), Hand Control Unit (HCU), Boresight Module (BSM).

Looking at the potential customers for T-129, it may serve well, but offers no near capabilities as Apache. With its enhanced Integrated Aircraft Survivebility Equipment, Adaptable and Asymmertic Weapon Load Capability, the rotorcraft does have a potential to become a successful machine and secure its position among world’s best attack helicopters.

Click Here for brochure of Atak Helicopter.

Leave a comment

Filed under Afghanistan, Agusta Westland, Apache AH-64, ATAK, Attack helicopters, Aviation, Boeing, Current Affairs, Engineering, Flight Global, Global Aviation, Longbow Radar, Milimeter Wave Radar, Pakistan, Paris Art Show, T-129, Turkey, Turkish Aerospace Industries