Category Archives: ASN Technology

Intellegent Warfare: Electronic Support Measures and Application of HARM Missile

USS KITTY HAWK (CV 63), At Sea (November 9, 2005) – Aviation Ordnanceman prepare to load a CATM-88 Harm missile onboard the USS Kitty Hawk (CV-63). While at sea, Kitty Hawk and Carrier Strike Group 5 will be participating in an annual exercise with the Japanese Maritime Self Defense Force. Currently underway in the western Pacific Ocean, Kitty Hawk Carrier Strike Group demonstrates power projection and sea control as the Navy's only permanently forward-deployed aircraft carrier strike group, operating from Yokosuka, Japan. U.S. Navy photo by Photographer’s Mate 3rd Class (AW) Jonathan Chandler.

After writing few posts discussing the technological influence on defence stratagies of different nation, this time I thought to go slightly technical. A reader may use this information as an extension of my discussion on Electronic Warfare – Electronic Warfare Operations Warfare has always been conducted by adversaries who have been at great pains to understand their enemy’s strengths and weaknesses in order to minimise the risk to their own forces and territory. The detection and interception of messages and the efforts to deceive the enemy have long been the task of the ‘secret service. As methods of communication developed, so too did methods of interception become more effective. Radar has developed from a mere detection mechanism to a means of surveillance and guidance. This post is focuses on gathering information on immediate threats which is performed by Electronic Support Measures (ECM)

MH-53 Pave Low helicopters prepare to take off for their final combat mission on Sept. 27, 2008, in Iraq. The MH-53, the largest and most technologically advanced helicopter in the Air Force with a record dating back to the Vietnam War, was retired from the Air Force inventory on Sept. 30, 2008

Electronic Warfare (EW) planning requires a broad understanding of enemy and friendly capabilities, tactics, and objectives. Employment of EW assets must be closely integrated into, and supportive of, the commander’s overall planning effort. This planning requires a multidisciplined approach with expertise from operations (ground, airborne, space), intelligence, logistics, weather, and information. Application of this sort of EW planning and employment was seen in Operation Desert Storm in 1991. three US Air Force MH-53J PAVE LOW helicopters (shown above) led nine US Army AH-64 Apache helicopters across the Saudi Arabia-Iraq border to attack two Iraqi early warning radar sites. Taking down these two sites opened the door for attacks across Iraq by F-117s, other coalition aircraft and Tomahawk missiles (shown below).

Block IV Cutaway - Raytheon

After the F-117s and cruise missiles came conventional aircraft. From 0355L to 0420L (H+55 to H+1:20) large numbers of USAF, USN, USMC, RSAF, and RAF aircraft smashed Iraqi air defenses and fields from H-3, an airfield located in western Iraq, to Ahmed Al Jaber, an airfield in occupied Kuwait. Two packages of aircraft, one a USN package from the Red Sea carriers and the other a USAF package from the south pointed directly at Baghdad. These “gorilla” packages were intended to seem threatening enough to force the Iraqis to hurl their air resources in defense. Air Force ground-launched BQM-34 and Navy tactical air-launched decoys (TALD) mimicked the radar return of conventional aircraft to further arouse Iraqi radar operators, many already confused by the absence of central control from Kari. Finally, radar-jamming aircraft radiated blanketing electronic emissions that drove the Iraqi radar operators to go to full power in an attempt to break through the interference. Then, the two incoming coalition flights revealed their true nature and pounced in a shrewd and devastating ruse.

The newest upgrade is a joint venture by the Italian Ministry of Defense and the US Department of Defense: the AGM-88E Advanced Anti Radiation Guided Missile (AARGM), produced by Alliant Techsystems.

What was unique here that, instead of bomb-carrying fighter-bombers, they were radar-killing electronic warriors carrying AGM-88 high-speed antiradiation missiles (HARMS) designed to home in on SAM and AAA radar (shown above). The AGM-88 High-speed Anti-Radiation Missile (HARM) is a tactical, air-to-surface missile designed to home in on electronic transmissions coming from surface-to-air radar systems. Originally developed by Texas Instruments (TI) as a replacement for the AGM-45 Shrike and AGM-78 Standard ARM system. Production was later taken over by Raytheon Corporation (RAYCO) when they purchased TI’s defense business. The AGM-88 can detect, attack and destroy a radar antenna or transmitter with minimal aircrew input. The proportional guidance system that homes in on enemy radar emissions has a fixed antenna and seeker head in the missile’s nose. A smokeless, solid-propellant, dual-thrust rocket motor propels the missile at speeds over Mach 2. HARM, a Navy-led program, was initially integrated onto the A-6E, A-7 and F/A-18 and later onto the EA-6B. USAF F-4G Wild Weasels alone expended dozens of HARMS in twenty minutes, while USN/USMC F/A-18s fired one hundred for the night. HARMS filled the air over Baghdad, the site of over one-half of Iraq’s SAM and AAA batteries. Foolishly, the Iraqis did not turn off their radars, even when the HARMS fireballed in their midst; as one USAF flight leader averred, ‘the emitters came on and stayed on for the entire flight of the missiles.’ This deadly surprise not only destroyed many Iraqi radars, it also terrified their operators. For the rest of the war, they showed great reluctance to use radar and often chose to launch their SAMs with optical or even no guidance.

High-speed Anti-Radiation Missile (HARM) – A Little Overview

The initial HARM attack and the F-117 bombings of the Kari system left Iraq’s integrated air defense system shattered, opening up the country so completely that, within days, coalition air-to-air tankers regularly operated in Iraqi airspace. Other non-stealthy aircraft pummeled Iraqi airfields. An anti-radiation missile (ARM) is a missile which is designed to detect and home in on an enemy radio emission source. Typically these are designed for use against an enemy radar, although jammers and even radios used for communication can also be targeted in this manner. This sort of weapons are key to EW inventory. The word “Radiation” here refers to Electromegnetic radiation, not nuclear. The missile is the direct descendant of the Shrike and Standard ARM missiles used in Vietnam. Most ARM designs to date have been intended for use against ground-based radars. Commonly carried by specialist aircraft in the SEAD (Suppression of Enemy Air Defense) role (known to the USAF as “Wild Weasels”), the primary purpose of this type of missile is to degrade enemy air defenses in the first period of a conflict in order to increase the chances of survival for the following waves of strike aircraft. They can also be used to quickly shut down unexpected SAM sites during a raid. Aircraft which fly with strike aircraft to protect them from enemy air defences often also carry cluster bombs and are known as a SEAD escort. The cluster bombs can be used to ensure that after the ARM disables the SAM system’s radar, the command post, missile launchers, and other components or equipment are also destroyed to guarantee the SAM site stays down.

The R-27 is manufactured in infrared-homing (R-27T), semi-active-radar-homing (R-27R), and active-radar-homing (R-27AE) versions, in both Russia and the Ukraine. The R-27 missile is carried by the Mikoyan MiG-29 and Sukhoi Su-27 fighters, and some of the later-model MiG-23MLD fighters have also been adapted to carry it.

The above account of the First Night of Operation Desert Storm was taken from the Decisive Force: Strategic Bombing in the Gulf War by Richard G. Davis. More recently, air-to-air ARM designs have begun to appear, notably the Russian Vympel R-27P. Such missiles have several advantages over other missile guidance techniques; they do not trigger radar warning receivers (conferring a measure of surprise), and they can have a longer range (since battery life of the seeker head is the limiting factor on the range of most active radar homing systems).

Electronic Support Measures

Technically ESM consists of a collection of senstive antennas designed to detect signals in different frequency bands. Often these antennas are grouped at aircraft’s wing tip pod, which allows a wide angle view without causing too much obstruction as well as to enable a fix on the signal source to obtain an accurate Dircection of Arrival (DoA) of the signal. An effective ESM system rapidly identifies the signal band and location, and determines the signal characteristics. A signal analyser then examines the signal characteristics to identify the type of transmitter and the level of threat posed. Even the most cursory of analysis can establish whether the emitter is associated with surveillance, target tracking or target engagement. This analysis can compare the signal with known emitter characteristics obtained from an intelligence database or threat library and known signal types confirmed and new emissions identified and categorised. Every signal identification is logged with date, time and intercept coordinates, along with the known or suspected platform type, and the results are stored.

ESm Pods on Nimrod: As well as providing threat information, ESM is used by maritime and battlefield surveillance aircraft as a passive or listening sensor which adds important information to other sensors. It is especially useful when tracking submarines

Signals received by the electronic support measures system may in some cases be analysed instantaneously to produce an identity for the transmitter of each signal received. Pulse width, Pulse amplitude and carrier frequency are few important parameters. The nature of the pulse shape is used to determine the particular type of transmitter. The scan rate and the pattern of the scan also provide invaluable information about the mode of the transmitter. It is possible to detect the antennas changing from scanning mode to lock-on to tracking and hence determine the threat that the transmitting station poses. As well as providing threat information, ESM is used by maritime and battlefield surveillance aircraft as a passive or listening sensor which adds important information to other sensors.

The salient signal characteristics or discriminators identified during the ESM collection and identification process includes: Signal Frequency (this is to detect the radar type), Blip/Scan ratio (to get the estimate for scan rate, sector scan width and radar bandwidth), Scan Rate, Scan Pattern (Search, track, track-while-scan (TWS) and ground-mapping (GM) modes will exhibit particular characteristics), Signal Modulation (Pulse, pulse compression, pulsed Doppler (PD), a continuous wave (CW) and other more sophisticated forms of modulation are indicative of the emitter mode(s) of operation and likely threat level) and finally Pulse Repetition Frequency (PRF).

Technical details as well as the schemetic of the ESM system can found in any dedicated military systems book, however, those who are Interested to explore more, I will strongly recommend Military Avionics Systems by Ion Mior and Allen Seabridge.

The combination of analysis of all these modes of operation and when they are employed either singly or in combination is vital to establishing the likely capabilities and intentions of a threat platform, especially when used in combination with other intelligence information. Electronic Support Measures may be employed at a strategic intelligence-gathering level using an AWACS (airborne early warning and command system) or MPA aircraft to build the overall intelligence picture and electronic order of battle (EOB). Alternatively, such information may be gathered and utilised at a tactical level using radar warning receivers (RWR), whereby information is gathered and used at the strike platform level to enable strike aircraft to avoid the most heavily defended enemy complexes during the mission.

As I mentioned earlier, this (ESM) is one element of Electronic Warfare. This is because the nature of EW warfare and devices used. The operating frequency ranges for radars are usually very broad, and no single system can cover the whole range for transmission or reception. Hence, most communications and radar systems are designed for use in specific bands. These bands are usually designated by international convention. The main role of electronic warfare is to search these radio-frequency bands in order to gather information that can be used by intelligence analysts or by front-line operators. The information gained may be put to immediate effect to gain a tactical advantage on the battlefield; it may be used to picture the strategic scenario in peace time, in transition to war, or during a conflict. It may also be used to devise countermeasures to avoid a direct threat or to deny communications to an enemy. It must also be observed that such tactics are deployed by all sides in a conflict – in other words, the listeners are themselves being listened to.


1 Comment

Filed under AAR Corporation, AARGM, Afghanistan, AGm-113 Hellfire, AGM-154 JSOW, Agusta Westland, Air Defence, Anti-Radiation Missiles, ASN Technology, ASN-229A UAV, Asymmetric Weapons, AWACS, Black Hawk, BQm-34, CIA, Cold War, Direct Energy Warfare, Direct Energy Weapons, Electromagnectic Pulses, Electromagnetic Spectrum, F-117, F/A-18, HARM, Lockheed Martin, Lockheed martin F-16, MH-53, MH-53 Pave, NATO, Navy tactical air-launched decoys, Northrop-Grumman, Operation Desert Storm, People Liberation Army, R-27, RAF Nimrod, RSAF, S-400 missiles, Sea King, SEAD, Sukhoi, Sukhoi PAK-FA, Sukhoi Su-33, surface-to-air missile, TALD, Tommahawk missiles, U.S Marines, US Department of Defense, US Navy, USMC, USS Kitty Hawk, Vietnam War, Wild Weasels

Nuclear Doctrine of Pakistan: Dilemmas of Small Nuclear Force in the Second Atomic Age

Dilemmas of Small Nuclear Forces, 4-series of articles highlighting the Nuclear Doctrine of Pakistan, its command and control system. The series contain 3 articles: First article (below) explore the Rise of Nuclear Deterrence, Second: is subjected to Post-1998 Doctrinal Contemplation, Third: Confidence-Building Measures between India and Pakistan, and Fourth: concludes with the military objectives of Pakistan’s nuclear weapons and highlights from the Nuclear Security Summit 2010.

Pakistan regards its nuclear weapons as its most precious strategic asset which constitutes the ultimate guarantor of nation's existence. This is encapsulated in an article by Gen Mirza Aslam Beg titled 'Pakistan's Nuclear Imperatives' wherein he wrote "Oxygen is basic to life, and one does not debate its desirability, nuclear deterrence has assumed that life-saving property for Pakistan.

A doctrine could be defined as a set of principles formulated and applied for a specific purpose, working towards a desired goal or aim. A nuclear doctrine would consequently consist of a set of principles, and instructions for the employment or non-employment of nuclear weapons and other associated systems. Until 2005, India and Pakistan were the only states outside the Nuclear Nonproliferation Treaty to declare, openly, their nuclear weapons capability. In 1998, they tested nuclear weapons and since then, deployed ballistic missiles, enunciated nuclear doctrine, and made organizational changes to their nuclear establishments. In 2002, they teetered on the brink of war in Kashmir. The second half of this article dilate somewhat the factors that have conceived the concept which has formulated the nuclear doctrine of Pakistan. I certainly believe that in South Asia a balance of power cannot be maintained by conventional means alone. This article endeavours to construct a proto Pakistani nuclear use doctrine from its declaratory and operational postures, in particular from the statements and interviews of the Pakistani political and military leaders and government officials. Initially reflecting upon its pre-1998 nuclear strategy, which has got critical implications for the post-tests doctrinal contemplation.

Pakistan is believed to have been developing a nuclear capability since the early 1970s. In May 1998, Pakistan responded to India’s nuclear tests by testing a series of nuclear weapons and declaring itself a nuclear weapon power. Pakistan, like India, has supported comprehensive disarmament proposals at the United Nations and Conference on Disarmament, but did not join the CTBT for similar reasons as India. Pakistan has proposed a number of bilateral or regional initiatives which India has not supported. These include a Nuclear Weapons Free Zone in South Asia and joining the NPT. India opposes these on the grounds that they do not address the nuclear threat India faces from China and the other NWS. Pakistan and India have concluded a number of bilateral confidence building measures including a hot-line agreement and an agreement not to attack each other’s nuclear power facilities.

While all these (including Pakistan, India, North Korea and Israel) small nuclear powers are in the process of developing their nuclear force structures, two key questions that have arisen are: How, when and for what purposes do they plan to use nuclear weapons? And what command. The word “small” here distinguishes these nation and their doctrines from U.S.A, UK, France and Russia. Prime focus is to understand the emerging structure of Pakistan’s Nuclear Doctrine.

President Barack Obama greets Pakistan's Prime Minister Yusuf Raza Gilani at the Nuclear Security Summit in Washington April 12, 2010. REUTERS/Kevin Lamarque

In The Myth of Independence, Zulfikar Ali Bhutto (president of Pakistan in December 1971) argued that modern wars should be conceived of as total wars, and in this type of war Pakistan needed nuclear weapons. Bhutto’s thinking, as will be analysed below, had far-reaching impacts on Pakistan’s nuclear strategy, and on its doctrinal contemplation. Soon after assuming Presidency of Pakistan on 20th December 1971 he took the decision to initiate a nuclear weapons project. This decision was taken against the backdrop of three specific factors: firstly, it was a direct consequence of the 1971 war where Pakistan’s conventional inferiority was demonstrated for the third time, at the cost of almost half of its territory; secondly, Pakistani leaders in general (particularly Bhutto) were convinced that India was determined to build a nuclear arsenal; and thirdly, Bhutto believed that only nuclear weapons could guarantee the national survival of Pakistan against the Indian threat.8 It is evident that Pakistan’s nuclear weapons project was initiated to deter Indian nuclear as well as conventional aggression, an aim that endured in the subsequent years and today constitutes one of the central pillars of Pakistan’s nuclear use doctrine.

Brass Tacks Crisis – First Nuclear Deterrence Posture [1986-1987]

After India and Pakistan held nuclear tests in 1998, experts have debated whether their nuclear weapons contribute to stability in South Asia. Experts who argue that the nuclear standoff promotes stability have pointed to the U.S.-Soviet Union Cold War as an example of how deterrence ensures military restraint.

First employment of Pakistan’s nuclear deterrent stratagy was during the 1986-1987 brasstacks crisis between India and Pakistan. With the crisis peaking in January 1987, India had deployed 400,000 troops, or about half the Indian army, within 100 miles of Pakistan. It began when India had launched the largest ever military exercises in the subcontinent, called Operation Brass Tacks. The exercise would take place not in India’s far north, where the always tense state of Kashmir is located, but in the desert area of Rajastan, a few hundred miles from the Pakistani border, which, a the Pakistani government was sure to note, was and ideal location from which to launch a cross border operation into the Pakistani state of Sindh that could cut Pakistan in half. The exercises included bulk of Indian Army, and was comprised of the nine infantry, three mechanised, three armoured and one air assault divisions, and three armoured brigades under four corps HQ with all theparaphernalia for a real war, concentrated on Pakistan’s sensitive border areas. This was bigger than any NATO exercise – and the biggest since World War II. Also planned was an ambitious amphibious operation by the Indian Navy with one division, in Korangi area of Karachi. Another feature of the exercise was a decision by General Sundarji to integrate Indias special weapons, including tactical nuclear into day-to day field maneuvers of the troops.

Pakistani military analysts saw Brass Tacks as a threatening exhibition of an overwhelming conventional force. Some even suspected that India wanted to launch swift surgical strikes at the Sikh terrorists’ training and planning sites inside Pakistan. Pakistan responded with maneuvers of its own that were located close to India’s state of Punjab. The crisis atmosphere was heightened when Pakistan’s premier nuclear scientist Abdul Qadir Khan revealed in a March 1987 interview that Pakistan had manufactured a nuclear bomb. Although Khan later retracted his statement, India stated that the disclosure was “forcing us to review our option.” Interview by Dr A.Q Khan’s interview to Indian journalist, Kuldip Nayar records:

what the CIA has been saying about our possessing the bomb is correct and so is the speculation of some foreign newspapers … They told us that Pakistan could never produce the bomb and they doubted my capabilities, but they now know we have done it … Nobody can undo Pakistan or take us for granted. We are there to stay and let it be clear that we shall use the 10 bomb if our existence is threatened.

Formal and impromptu talks between the leaders of the two countries finally resulted in a number of new CBMs between India and Pakistan. These were important and covered a number of areas. For example, the Agreement on the Prohibition of Attack against Nuclear Installations and Facilities was signed on December 31, 1988, in Islamabad by the two foreign secretaries and witnessed by the two prime ministers, Rajiv Gandhi and Benazir Bhutto, respectively. Earlier fears of impending attack on the facilities resulting in an all-out war fed the need for the agreement.

Kashmir – Second Nuclear Deterrence Posture [1990]

Kashmir has been a flashpoint since Indian and Pakistani independence in 1947. Many analysts have feared that nuclear weapons could be used if conventional hostilities over Kashmir were to spiral out of control, especially if, as in 1965 Indo-Pakistan conflict

Pakistan again advanced a nuclear deterrent posture in 1990 in the context of a spiralling crisis over the disputed territory of Kashmir, which developed against the backdrop of an acute separatist insurgency in the Indian. Reportedly, New Delhi planned for surgical air strikes against the militant training camps inside Pakistani territory, which prompted Islamabad to assemble a crude nuclear bomb and modify several American supplied F-16 aircrafts for its delivery. The crisis was eventually averted through diplomatic intervention from Washington, but Islamabad firmly believed that Pakistan’s deterrence posture prevented India from carrying out the planned strike. This crisis also marked the emergence of a nascent mutual nuclear deterrence in the Indo-Pakistani context.

Command and Control of Nuclear Deterrence

What did emerge during this period, primarily in the context of the 1986-87 Brasstacks crisis and the 1990 Kashmir episode, was a general notion of nuclear deterrence, which implied that Pakistan would use nuclear weapons to counter India’s nuclear as well as conventional aggression. to build a robust nuclear command structure. However, former Army chief of staff General Mirza Aslam Beg has claimed that the Pakistani leadership realised the necessity of establishing a command structure,

given the tension, mutual mistrust and suspicion between India and Pakistan, it is dangerously tempting for each to launch an attack before being attacked which could escalate to a nuclear level.

Bhutto had established a National Nuclear Command Authority (NNCA) in the 1970s, which institutionalised the nuclear decision-making and assumed the responsibility of developing a nuclear force structure and appropriate alert posture. (‘NNCA Responsible for Safeguarding Nuclear Programme, The News, 2 June 1998).

Pakistan Nuclear Capabilities and Thinking

Most observers (SIPRI Yearbook 1995, Bulletin of Atomic Scientists, 1998) estimate that Pakistan has enough nuclear material (highly enriched uranium and a small amount of plutonium) for 30 to 50 nuclear weapons. Like India, Pakistan is thought to have a small stockpile of nuclear weapons components and can probably assemble some weapons fairly quickly. Pakistan could deliver its nuclear weapons using F-16s (shown above) it purchased from the United States provided the appropriate “wiring” has been added to make them nuclear-capable. In the 1980s, Pakistan moved assiduously to acquire ballistic missile capabilities and now deploys short-range ballistic missiles and a small number of medium-range missiles. AQ Khan, former head of Khan Research Laboratories, maintained that only the medium-range Ghauri missiles would be usable in a nuclear exchange (given fall-out effects for Pakistan of shorter-range missiles). Other observers view the 30 to 50 Hatf2 short-range (300km) missiles (modified Chinese M-11s) as potential delivery vehicles for nuclear weapons. Ghauri missiles (1350 and 2300km), which reportedly are based on the North Korean No-Dong and Taepo-Dong-1, are capable of reaching New Delhi with large payloads.

It is believed that Because of its fears of being overrun by larger Indian forces, Pakistan has rejected the doctrine of no-first-use. In May 2002, Pakistan’s ambassador to the UN, Munir Akram, stated that “We have not said we will use nuclear weapons. We have not said we will not use nuclear weapons. We possess nuclear weapons. So does India ...We will not neutralize the deterrence by any doctrine of no first use

On June 4, 2002, President Musharraf went a step further then his UN ambassador sna stated that: “The possession of nuclear weapons by any state obviously implies they will be used under some circumstances. In recent years, Pakistan apparently has taken steps toward refining command and control of nuclear weapons. In April 1999, General Musharraf announced that the Joint Staff Headquarters would have a command and control arrangement and a secretariat, and a strategic force command would be established. With some experience and the passage of time a degree of sophistication will certainly be introduced in Pakistan’s nuclear doctrine of the first-use of nuclear weapons to provide the government more options in the use of nuclear weapons. This would also avoid unessential collateral damage to cities and other population centres in both countries. The object would be to employ nuclear weapons if attacked yet cause the least civilian casualties and damage to infrastructure.


Escalation Control in South Asia,’ in Escalation Control and Nuclear Option in South Asia, eds M. Krepon, R. W. Jones, and Z. Haider, The Henry L. Stimson Center, Washington, D.C., 2004, p. 89.
Z. A. Bhutto, The Myth of Independence, Oxford University Press, Lahore, 1969, p. 153.
B. Chakma, ‘Road to Chagai: Pakistan’s Nuclear Programme, Its Sources and Motivations, Modern Asian Studies, vol. 36, no. 4, 2002, p. 887.
P. Hoodbhoy, ‘Nuclear Deterrence – An Article of Faith,’ The News (Rawalpindi), 17 March 1993.
‘NNCA Responsible for Safeguarding Nuclear Programme, Says Beg,’ The News, 2 June 1998.
S. H. Hasan, ‘Command and Control of Nuclear Weapons in Pakistan,’ Swords and Ploughshares, vol. 9, no. 1, 1994, p. 13.

Images: Title: Nicholson cartoon (, and Reuters

1 Comment

Filed under Al-Qaeda, ASN Technology, Asymmetric Weapons, Ballistic missiles, Barak Obama, Brass Tacks Crisis, Bulletin of Atomic Scientists, Centre for Strategic and Budgetary Assessments (CSBA), China, China Defence, Chinease Defence, Chinese M-11, CIA, Cold War, Current Affairs, Dr A Q Khan, Drone Attacks Pakistan, F-16, Fifth Generation Combat Aircraft, Foreign Office Pakistan, General Pervez Mushuraf, Ghauri, Hatf2, India, India Special Weapons, Iran, ISI, Islamabad, Israel, Joint Staff Headquarters, Kashmir Conflict, Kuldip Nayar, Lockheed Martin, Lockheed martin F-16, Mirza Aslam Baig, Muslim World, Myth of Independence, National Nuclear Command Authority, NATO, New Delhi, NNCA Pakistan, No-Dong, Northa Korea, Nuclear Doctrine, Nuclear Security Summit 2010, Operation Brass Tacks, Pak-Af, Pakistan, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Chief of Army Staff, Pakistan Defence, Pakistan-Afghnistan Border, Pakistan-China, Pakistan-India Wars, President Musharraf, Quetta, Rao Qamar Suleman, S-300 Missiles, Safeguarding Nuclear Programme, shorter-range missiles, Sindh, South Asia, Taepo-Dong-1, The wilds of Waziristan, U.S Policy on Pakistan and Afghanistan, United Nations, US Department of Defense, Weapons of Mass Destruction, WMDs, Zulfikar Ali Bhutto

Iran: Prioritizing Sky Defences

Don’t listen to those who speak of democracy. They all are against Islam. They want to take the nation away from its mission. We will break all the poison pens of those who speak of nationalism, democracy, and such things. [Ayatollah Ruhollah Khomeini]

Before the 1979 Islamic Revolution, Iran’s air forces were considered second only to Israel in the Middle East, built up by aid from the country’s then-ally the United States.

GENEVA: World powers held their first meeting in 14 months with Iran over its disputed nuclear programme on Monday (today), sounding out Tehran’s intentions after it claimed to have taken a new step in making fissile material. Just a day ahead of the talks, Tehran raised the stakes by revealing that it had mined and produced its first home-grown batch of uranium yellowcake instead of seeking to import new supplies. On the other hand, In military maneuvers and air shows, Iran has been proudly touting advances in its air forces and defenses, including radar systems, anti-aircraft batteries and new attack and reconnaissance drones. Air superiority is seems to be a new priority for Iran, who is trying to quickly bolster its ability to patrol its skies in the belief that US or Israeli warplanes or missiles could strike its nuclear facilities. For the most part, Iran’s air attack capabilities still depend heavily on domestically modified versions of long-outdated warplanes, including former Soviet MiGs and American F14A Tomcats from the 1970s, and its anti-aircraft batteries and drones.

Taking the air defences further, It was not a long ago when Iran kicked off one of its periodic air defense exercise, in order to protect their nuclear sites. Started on 16th November, the exercise lasted five days and featured Iran’s elite Islamic Revolutionary Guards Corps (IRGC) and its paramilitary Basij forces joining in. Interestingly, The monitoring network of Iran’s air defense forces has discovered 194 previously unknown flying routes outside the country’s airspace, not only that Iranian Air Defense Forces has identified 1,612 flying routes (4 unknowns within the countary) inside the country, some are currently used by countary’s civilian airline industry. This identification resulted, during Iran’s Air Defence and Missile System tests, conducted same week. This air defence exercise was named Defenders of the Sky of Vellayat III. More about S-300 missiles and defence of Islamic skies can be read HERE .

This photo released by the Iranian army, claims to show the launching of a Shahin missile in armed forces war games, outside the city of Semnan about 140 miles (240 kilometers) east of the capital Tehran, Iran, Thursday, Nov. 18, 2010

Still, Iran clearly is trying to close security gaps around nuclear sites – including Iran’s main uranium enrichment lab – and blunt the edge that the Pentagon and Israel gain from drone technology. Iranian commanders now view drones as a critical tool, including to monitor the US 5th Fleet based across the Gulf in Bahrain. Iran’s other military emphasis has been improving its long-range missile program. Washington believes Iran may have obtained advanced missiles from North Korea, known as BM-25, which could extend the strike range for Iran from the known 1,200 miles (1,900 kilometers) to up to 2,400 miles (4,000 kilometers), according to State Department cables obtained by the website WikiLeaks and made public Sunday. Such missiles could hit well beyond Iran’s top regional enemy Israel and into Europe or Russia. Iran restructured its military last year in an effort to improve its air defenses. Supreme Leader Ayatollah Ali Khamenei ordered a new branch to be split off from the air force to deal exclusively with threats to the country’s airspace. Since then, Iran has invested heavily in advances in surveillance and attack drones.

In August, Iranian President Mahmoud Ahmadinejad unveiled the latest addition to the country’s drone fleet: a 13-foot-long (four-meter-long) unmanned aircraft — called the “ambassador of death” — which can carry up to four cruise missiles with a claimed range of 620 miles (1,000 kilometers). At least two other Iranian nuclear scientists have been killed in recent years, one of them in an attack similar to the recent one. Iranian officials said they suspected the assassination was part of a covert campaign aimed at damaging the country’s nuclear program, which the United States and its allies says is intended to build a weapon, a claim Tehran denies. President Mahmoud Ahmadinejad told a press conference that ”undoubtedly, the hand of the Zionist regime and Western governments is involved in the assassination.” But he said the attack would not hamper the nuclear program and vowed that one day Iran would take retribution. ”The day in the near future when time will come for taking them into account, their file will be very thick,” he said.

As far as drones are concerned Iranians has seen what USA has done iin Pakistan and Afghanistan. Many analysts believe a longer-range drone is the logical next step of Iran – who is investing heavily in advances in surveillance and attack drones. What is the purpose of these activities and advances, while still holding onto the outdated militray technology, or is it political to show that they can defend themselves, exert power in the region?

Leave a comment

Filed under AGm-113 Hellfire, AGM-154 JSOW, Anti Aircraft Artillery, Asia's New SAMs, ASN Technology, ASN-229A UAV, ATAK, Ballistic missiles, Drone Technology, Drones, Global Aviation, Global Times, Information Operations, Iran, Iran's Air Defence and Missile System, Iranian Defense Ministry, Iraq, ISI, Islamic Revolutionary Guards Corps, Israel, Pakistan, S-300 Missiles, S-400 missiles, SD-10 Missile, Taliban, Tehran, Terror Free Tomorrow, U.S Marines, UAV, War on Terror

E-Bomb – Direct Energy Warfare

6th Generation Aircraft - Airforces to End the Desire for Pilots

The rules of battle have changed over the entirety of military history. Tools such as technology, strategy, tactics and weapons have been the principal elements determining what kind of rules apply to the battlefield. What can consititute to a sixth generation fighter jets – Thats the question I am asking myself since past week. Although it might be too early to think of these questions, when even planes like JSf, PAK-FA or F-22 are not even fully opertional. The contemporary military rivalry is driven mostly by the ongoing military technical revolution. In particular, the weapons used on the future battlefield will play an important role in military affairs. Which weapons can play a key role in the future? I will try not to be too technical, such that the article is applicable to general public as well, however, I have included the research papers and appropriate links for those intending to explore more about E-Bombs or Electromagnetic Weapon Systems.

Sixth generation jet fighters are currently conceptual and expected to enter service in the United States Air Force and United States Navy in 2025-2030 timeframe. The technological characteristics may include the combination of fifth generation aircraft capabilities with unmanned capibility, unrefueled combat radius greater than 1000 nm and Direct Energy Weapon. It is latter which is a subject of this article. One form of this energy is Electronic Bomb (E-Bomb). This article aim to explore the technical aspects and potential capabilities of this type of bomb, target measurements and its comparison with other form of electromagnectic weaponry.

Research has shown that it is possible to develop such kind of device. Directed Energy research originated with research work done to determine the impact to important military systems operating in harsh electromagnetic environments. One of the most threatening and pervasive of all electromagnetic threats is that due to electromagnetic pulse.

These pulses can burst of electromagnetic radiation that results from an explosion (usually from the detonation of a nuclear weapon) and/or a suddenly fluctuating magnetic field. However, its not only the nuclear weapon who generates these pulses, Non-nuclear electromagnetic pulse (NNEMP) is an electromagnetic pulse generated without use of nuclear weapons. There are a number of devices that can achieve this objective, ranging from a large low-inductance capacitor bank discharged into a single-loop antenna or a microwave generator to an explosively pumped flux compression generator. To achieve the frequency characteristics of the pulse needed for optimal coupling into the target, wave-shaping circuits and/or microwave generators are added between the pulse source and the antenna. A vacuum tube particularly suitable for microwave conversion of high energy pulses is the vircator. These HEMP induced stresses can damage or severely disrupt some electronic systems, which are sensitive to transient disturbance. Significant potential damaging effects can occur at long ranges to virtually all systems located within line-of-sight of the detonation point. Thus it is feasible to say, that NNEMP generators can be carried as a payload of bombs and cruise missiles, allowing construction of electromagnetic bombs with diminished mechanical, thermal and ionizing radiation effects and without the political consequences of deploying nuclear weapons.

The fact that an electromagnetic pulse is produced by a nuclear explosion was known since the earliest days of nuclear weapons testing, but the magnitude of the EMP and the significance of its effects were not realized for some time. As a result of the test, a very short but extremely intense electromagnetic pulse was observed. This pulse propagated away from its source with a decreasing intensity, which is also to be expected according to the theory of electromagnetism.

According to the CBS reports dated March 2003 stated the application of experimental EM Pulse:

The U.S. Air Force hit Iraqi TV with an experimental electromagnetic pulse device called the “E-Bomb” in an attempt to knock it off the air and shut down Saddam Hussein’s propaganda machine. The highly classified bomb created a brief pulse of microwaves powerful enough to fry computers, blind radar, silence radios, trigger crippling power outages and disable the electronic ignitions in vehicles and aircraft. Officially, the Pentagon does not acknowledge the weapon’s existence.

Direct Energy Warfare

Military action involving the use of directed-energy weapons, devices, and countermeasures to either cause direct damage or destruction of enemy equipment, facilities, and personnel, or to determine, exploit, reduce, or prevent hostile use of the electromagnetic spectrum through damage, destruction, and disruption. The defensive part of Electronic Warfare includes the offensive actions such as preventing the enemy’s use of the electromagnetic spectrum through counter measures such as damaging, disrupting, or destructing the enemy’s electromagnetic capability. Such weaponry (DEW) is an evolving addition to the EW.

Characteristics of Direct Energy Weapons

The most common characteristics of the direct energy weapons is that they attack at the Speed of Light. This pose some advantage over conventional weaponry, This helps in defeating targets
such as theater and ballistic missiles before they can deploy defense-saturating sub-munitions. Another advantage of such weapons is that they can be used against multiple targets at the same time. The direct energy weapons are classified into four catagories; High Power Microwave (HPM), Charged Particle Beams (CPB), Neutral Particle Beams (NPB) and High Energy Laser (HEL). It is the latter which is highly potential for military applications (both stratagic and tactical missions). However, for E-Bomb it is HPM is a base. But offcourse when compared to Laser technology, the microwave technology lags in terms of research. HPM – use electromagnetic radiation to deliver heat, mechanical, or electrical energy to a target to cause various, sometimes very subtle, effects. When used against equipment, directed electromagnetic energy weapons can operate similarly to omnidirectional electromagnetic pulse (EMP) devices, by inducing destructive voltage within electronic wiring. The difference is that they are directional and can be focused on a specific target using a parabolic reflector. High-energy radio frequency weapons (HERF) or high-power radio frequency weapons (HPRF) use high intensity radio waves to disrupt electronics. However, High and low power, Pulsed Microwave devices use low-frequency microwave radiation which can be made to closely mimic and interact with normal human brain waves having similar frequencies. Although belong to the same family of technology, the E-Bomb deployment differes from that of HPM.

Potential for Aircraft Operations

Scleher, D. Curtis in Electronic warfare in the information age, has defined the potential of these kind of weapons for Aircraft Operations. DEWs have great potential for aircraft operations since crews can enhance their own survivability in the battlefield, where the aircrafts are susceptible and vulnerable to missile threats, by protecting themselves with electromagnetic shields. In such environment, DEW systems may prevent the aircraft from threats by decreasing the detection and targeting capability of enemy. They may also aid in hit avoidance by deflecting, blinding, or causing the incoming missile to break lock and finally, where necessary, to destroy the missile itself before it reaches its target. An additional approach might be to defeat the fusing system of the incoming missile. However, when deploying these bombs, getting the projectile successfully right is the key, such that useful damage can be produced. Further information about the deployment of these DEWs can be accessed from Electronic warfare in the information age. By this stage one difference between HPM and E-bomb is apparanet, despite belonging to same technological family, and this difference is their deployment. HEMP – High Altitude Electromagnetic Pulse is not a directed energy weapon. The reason why HEMP is defined as an electromagnetic weapon is that it produces similar effects in electromagnetic spectrum and can cause similar impacts on electronic devices. The potential effects of a designed HPM weapon strongly depends on the electromagnetic properties of the target. Since it is difficult to get the required intelligence, the complexity of real systems poses technical difficulties. A typical HPM weapon system basically includes a prime source that generates the intended power, an RF generator, a system that shapes and forms the wave into the intended form, a waveguide through which the generated wave travel, an antenna that propagated the wave, and the control unit that manages all the steps.

AGM-154 Joint Standoff Weapon l

Delivery system considerations for E-bombs are very important. The massed application of such electromagnetic weapons in the opening phase of an electronic battle delivered at the proper instant or location can quickly lead the superiority in the electromagnetic spectrum. This package might mean a major shift from physically lethal weaponry to electronically lethal attacks (via e-bombs) as a preferred mode of operation. Potential platforms for such weapons delivery systems are AGM-154 JSOW (Joint Stand Off Weapon) glidebomb (shown above) and the B-2 bomber (shown below). The attractiveness of glidebombs delivering HPM warheads is that the weapon can be released from outside the effective radius of target air defenses, minimizing the risk to the launch aircraft, which can stay clear of the bomb’s electromagnetic effects.

B2-Bomber refueling

Another delivery method of e-bomb may be the use of UAVs. The technology of UAVs is still developing and partly immature; however, improvements can be expected in the next decade.

The e-bomb targets mission essential electronic systems such as the computers used in data processing systems, communications systems, displays, industrial control applications, including road and rail signaling, and those embedded in military equipment, such as signal processors, electronic flight controls and digital engine control systems. I must point out that when e-bomb outputs are too weak to destroy these systems but strong enough to disrupt their operations, system performance can be degraded. The relation between the altitude (shown below) where the e-bomb is detonated and a representation of the lethality range. Target information (to include location and vulnerability) becomes an important issue.

E-Bomb Footprint: Source <a href="">Carlo Kopp</a>

E-Bomb – Science Fiction or a Fact?

Sor, can this hypothetical e-bomb be a significant weapon for the future battlefield? Theoratically, the military advantage obtainable with e-bombs is related mostly to their operational significance. Will future battlefields will be won by the countries that best manage the revolution in military affairs or technological revolution? If latter is the case, then one has to remind himself that technology is not a winner on its own, but it has been, and it will continue to be, a critical enabler. If everything else is equal, the side with better technology will win. Finally, can the country that first develops this new weapon have a significant and exploitable military advantage against other powers? Is is feasible for a nation to invest in this kind of bomb ? – The Debate Continues

As I have mentioned earlier, this piece is not research but infact just collection of some work, to explore the potential of EM technology in modern warfare as well as extending our previous discussion of Electronic Warfare For further reading about the subject I strongly suggest to read the following researches

Kopp, C. 1993. A doctrine for the use of electromagnetic pulse bombs. Air Power Studies Centre. Paper No. 15.
Kopp, C. 1996. An introduction to the technical and operational aspects of the electromagnetic bomb. Air Power Studies Centre. Paper No. 50.
Kopp, C. 2006. Directed Energy Weapons-Part 1. Defense Today May/June Publication.
Mazarr, Michael J. 1993. Military Technical Revolution-A Structural Framework. Center for Strategic and International Studies. Washington, D.C.
Scleher, D. Curtis. 1999. Electronic warfare in the information age. Boston: Artech House.

Leave a comment

Filed under 20th Tactical Fighter Wing, Aerobatics, AGm-113 Hellfire, AGM-154 JSOW, Air Defence, ALQ-214 Radio Frequency Countermeasures, Anti Aircraft Artillery, Apache AH-64, Artificial Intelligence, ASN Technology, ASN Technology, ASN-229A UAV, ATAK, B2-Bomber, Black Ops, Boeing, Charged Particle Beams, Cold War, Dassault Mirage, Direct Energy Warfare, Direct Energy Weapons, Drone Technology, Drones, EB-66 Bomber, EF-111 Ravens, Electromagnectic Pulses, Electromagnetic Spectrum, Electronic Bomb, Electronic Support measures, Electronic Warfare, Eurofighter Typhoon, Fifth Generation Combat Aircraft, glidebomb, Global Aviation, High Energy Laser, High Power Microwave, HPM, Improvised Explosive Device, Information Operations, Joint Stand Off Weapon, Lasers Technology, Milimeter Wave Radar, NASA, NATO, Non-nuclear electromagnetic pulse, omnidirectional electromagnetic pulse, Predator, Radars, Radio Frequency, raytheon, Robotic Wars, Robotic Weapons, Robots, SD-10 Missile, Secretary of State, Sixth Generation Fighter Jet, Sniper Elite, Sukhoi PAK-FA, Sukhoi Su-33, surface-to-air missile, Terror Free Tomorrow, U.S Drone Technology, U.S Marines, UAV, Vietnam War, War on Terror, WMD

The Buzz on China’s Drones

Chinease Ajain - Dark Sword

Since UAV (or Drones, as known to Asia Pacific) are very much in main-stream these days. So, I had to dedicate some more space within my blog to these unmannes vehicles. In an ongoing Chinease 8th International Airshow – Zhuhai 2010, Chinese commercial and defense aviation companies are exhibiting more than 25 UAV models. That is a record number of UAVs, according to show officials, and continuing evidence of China’s growing interest in unmanned technology. So Chinease are not only competing western industry for civilian or military jets, but UAVs also, as the show reveals. Some of the UAVs will serve as combat and battlefield reconnaissance roles. In one video, a UAV locates a U.S. aircraft carrier and relays the information for a follow-on attack by Chinese anti-ship missiles. Three Chinese companies – ASN Technology Group, China Aerospace Science and Industry Corp. (CASIC), and China Aerospace Science and Technology Corp. (CASC) produced most of the UAVs on display.

ASN Technology is the largest UAV production company in China, with a history of developing unmanned aerial platforms, including drones, since 1958, said a company press release. The primary customer is the Chinese military and the company controls more than 90 percent of the UAV market in China. ASN showed off 10 different UAVs, including the new ASN-211 Flapping Wing Aircraft System, which simulates a bird in flight. The prototype on display has a take-off weight of only 220 grams with a maximum speed of six-to-10 meters a second and an altitude ranging from 20-200 meters, primarily for low-altitude reconnaissance missions.

The largest UAV on display by the company was the ASN-229A Reconnaissance and Precise Attack UAV. Equipped with a satellite data link, it can perform aerial reconnaissance, battlefield surveys, target location and artillery fire adjustment during the day or night. It has a take-off weight of 800 kilograms and a cruising speed of 160-180 kilometers per hour with an endurance of 20 hours. Weighing in at 800 kg, ASN’s largest system was the armed ASN-229A Reconnaissance and Precise Attack UAV, which is still under development. Able to cruise at 180 km/h, the 5.5 m-long ASN-229A can perform reconnaissance, target location or artillery observation missions via a satellite data-link. Also among the 600 exhibitors were China Aerospace Science and Industry Corporation (CASIC) and China Aerospace Science and Technology Corporation (CASC). Both state-owned companies showcased sophisticated missile-armed UAVs. CASC displayed the CH-3 carrying two air-to-ground missiles akin to the AGM-114 Hellfire. This 640 kg medium-range craft with 220 km/h cruising speed is optimised for reconnaissance, intelligence gathering, artillery fire adjustment and electronic warfare, as well as the depicted attack platform.

CASC displayed the CH-3 multipurpose medium-range UAV system suitable for battlefield reconnaissance, artillery fire adjustment, data relay and electronic warfare. A company official said the CH-3 could be modified as an attack platform carrying small precision-guided weapons. Weapons outfitted on the display included two air-to-ground missiles similar in configuration to the U.S.-built Hellfire. CASIC took the prize for UAVs capable of intimidating the U.S. military. These included the jet-powered WJ-600. Aerospace Science and Industry Group, according to the material, WJ-600 can be mounted opto-electronic reconnaissance, synthetic aperture radar, electronic surveillance and other mission equipment, with fast response, and strong penetration ability, and can all-time effect of all-weather reconnaissance and damage assessmenttask, you can also load other types of equipment to achieve the task of ground attack, electronic warfare, information relay, and target simulation and other military tasks. Moreover, this means that WJ-600 drone is capable of trabelling faster than both U.S Predator and Reaper, currently opnerational in Afghanistan and Pakistan. The general speed of the UAV flying only about 30 m/s (58.3 knots), while the WJ-600 can be up to 200 m/s (389 knots – about 100knots greater than U.S MQ-9 Reaper who is equipped with turboprop engine), better on the flight altitude, up to ten thousand meters altitude – thanks to its jet engine. At this stage the project look rather ambitious

Other UAVs displays included a little-known company called Zhuhai X.Y. Aviation, which exhibited two new reconnaissance platforms, the 200-kilogram Blue Arrow (UR-J1-001) and 40 kilogram Sky Eyes (UR-C2-008). A company spokesperson said there were three prototypes of the Blue Arrow now being test-flown and that the prop-driven engine was from an unidentified “German company.”

Closing the UAV Gap

The recent display of 25 UAVs at the Zhuhai was not only the surprise for westeran but also flet by Japan, North and South Korea, and the Taiwanese officials.Drone technology, thus far, has been led by the U.S. and Israel. China now has UAVs that are comparable, although not equal, to the American Predator and Global Hawk. most of the ASN models in use by the Chinese military are older, more like the 1990s technology found in the U.S. Army Shadow 200 (now being replaced by the Predator-like, 1.2 ton Gray Eagle). One of the most numerous Chinese army models, the ASN-206/207, is a 222 kg (488 pound) aircraft, with a 50 kg (110 pound) payload. The 207 model has a max endurance of eight hours, but more common is an endurance of four hours. Max range from the control van is 150 kilometers and cruising speed is about 180 kilometers an hour. A UAV unit consists of one control van and 6-10 trucks, each carrying a UAV and its catapult launch equipment. The UAV lands via parachute, so the aircraft get banged up a lot. A UAV battalion, with ten aircraft, would not be able to provide round the clock surveillance for more than a week, at best. But Chinese planners believe this is adequate.

Sources suggests that many of the Chinese UAVs demonstrate an American influence, some appear to be using Israeli technology. That’s no accident, as four years ago, Israeli UAV manufacturer EMIT got busted after it was caught shipping UAV technology to China. EMIT was not a major player in the UAV industry, having only three models; the 450 kg Butterfly, 182 kg (400 pound) Blue Horizon, the 48 kg (hundred pound) Sparrow. The twenty year old firm has been scrambling to stay in business. The Chinese helped set up a phony cooperative deal in a Southeast Asian country, to provide cover for the transfer of EMIT UAV technology to China. Most of EMIT’s production is for export, but Israel has agreed to consult with the United States about transfers of technology to China. This is because Israel has been caught exporting military equipment, containing American technology, to China (in violation of agreements with the United States.) China tends to get technology wherever, and whenever, it can.

Chinease Xianglong

Two years ago, China revealed that it was developing a new UAV, similar to the U.S. RQ-4 Global Hawk. Called Xianglong (Soaring Dragon – shown above), it is about half the size of the Global Hawk (shown below), at 7.5 tons, with a 14.5 meter (45 foot) wingspan and a .65 ton payload. Max altitude will be 18.4 kilometers (57,000 feet) and range will be 7,000 kilometers. It has a faster cruising speed (750 kilometers an hour) than the RQ-4. The Chinese Xianglong is intended for maritime patrol, as is a U.S. Navy model of the RQ-4. The shorter range of the Xianglong is apparently attributable to the lower capabilities of the Chinese aircraft engine industry.

U.S Global Hawk

Interestingly, This year’s models in Zhuhai included several designed to fire missiles, and one powered by a jet engine, meaning it could in theory fly faster than the propeller-powered Predator and Reaper drones that the U.S. has used in Iraq, Afghanistan, and Pakistan. The large number of UAVs on display illustrates clearly that China is investing considerable time and money to develop drone technology, not only that the equation is equally balanced by promoting these products to international market. The implications of this is not only China’s internal security, also this is also an opportunity for nations alike China or Pakistan who have sought in vain to acquire drones either for military purposes or for police surveillance and antiterrorist operations. However, this is of particular concern to the U.S. and Israel, whose drones are unrivalled in the world today, and could worry China’s neighbors. A further details about Chinease buzz on drone technology can be read at the Wall Street Journal who has recently published a detailed resarch about the Chinease catch-up to U.S and Israel.

Leave a comment

Filed under Aerobatics, Afghanistan, AGm-113 Hellfire, Air Show China 2010, ASN Technology, ASN Technology, ASN-206/207, ASN-229A UAV, Aviation, Boeing, CASC CH-3, Chengdu Aircraft, China, China Defence, Chinease Defence, Current Affairs, Drone Attacks Pakistan, Drone Technology, Drones, Fifth Generation Combat Aircraft, Flight Global, Global Aviation, Israel, Longbow Radar, Pakistan Aeronautical Complex, Pakistan Air Force, Pakistan Defence, Pakistan-China, Predator, RQ-4 Global Hawk, SD-10 Missile, U.S Drone Technology, UAV, Wall Street Journal, Xianglong UAV, Zhuhai 2010, Zhuhai Air Show