Category Archives: Flight Simulation

Agile Beams: Active Electronically Scanned Array Radars

AESAs aim their "beam" by broadcasting radio energy that interfere constructively at certain angles in front of the antenna. They improve on the older passive electronically scanned radars by spreading their broadcasts out across a band of frequencies, which makes it very difficult to detect over background noise. AESAs allow ships and aircraft to broadcast powerful radar signals while still remaining stealthy. Above is AESA on F22

The AN/APG-77 is a multifunction radar installed on the F-22 Raptor fighter aircraft. It is one of the most advanced radar today. More than 100 APG-77 AESA radars have been produced to date by Northrop Grumman, and much of the technology developed for the APG-77 is being used in the APG-81 radar for the F-35 Lightning II. The APG-77v1 was installed on F-22 Raptors from Lot 5 and on. This provided full air-to-ground functionality (high-resolution synthetic aperture radar mapping, ground moving target indication and track (GMTI/GMTT), automatic cueing and recognition, combat identification, and many other advanced features).

APG-77 is based on Active Electronically Steered Array (AESA) technology. The AESA includes multiple individual active transmit/receive (T/R) elements within the antenna. Depending upon the precise implementation, there may be anywhere between 1000 and 2000 of these individual T/R elements which, together with the RF feed, comprise the AESA antenna. As for the passive ESA, these elements are highly redundant and the radar can continue to operate with a sizeable percentage of the devices inoperative. This graceful redundancy feature means that the radar antenna is extremely reliable; it has been claimed that an AESA antenna will outlast the host aircraft. The fact that the transmitter elements reside in the antenna itself means there is no standalone transmitter – there is an exciter but that is all. As before, there is clearly a need for a receiver as well as an RDP and signal processor. The active T/R elements are controlled in the same way as the phase shifters on the passive ESA, either by using a beam-steering computer (BSC) or by embedding the beam-steering function in the RDP.

The ability to control many individual T/R modules by software means confers the AESA with immense flexibility of which only a few examples are: First each radiating element may be controlled in terms of amplitude and phase, and this provides superior beam-shaping capabilities for advanced radar modes such as terrainfollowing, synthetic aperture radar (SAR) and inverse SAR (ISAR) modes. Secondly Multiple independently steered beams may be configured using partitioned parts of the multidevice array. Thirdly If suitable care is taken in the design of the T/R module, independent steerable beams operating on different frequencies may be accommodated and Finally The signal losses experienced by the individual T/R cell approach used in the AESA also bring considerable advantages in noise reduction, and this is reflected in improved radar performance.

The AN/APG-80 system is described as "agile beam", and can perform air-to-air, search-and-track, air-to-ground targeting and aircraft terrain-following functions simultaneously and for multiple targets. As a SAR system utilizing NG's fourth-generation transmitter/receiver technologies, it has a higher reliability and twice the range of older, mechanically-scanned AN/APG-68 radar systems. Above is F-16 APG-80 Radar

One dramatic improvement is the noise figure; it is especially significant achieving such an improvement so early in the RF front end. This results in a remarkable range improvement for the AESA radar. A number of US fighter aircraft are being fitted or retrofitted with AESA radars, these are F-22 Raptor, F-18E/F (Upgrade version) fitted with AN/APG-79, F-16E/F (Block 60) fitted with AN/APG-80, F-15 and F-35 fitted with AN/APG-81. Taking for example F-16, it is interesting to see a dofference in performance between two batches (Block 50) and Block 60. Former had target detection radar range of 50 miles, which was improved to 70 miles with AESA radards (for reference F-22 covers 125miles range). The F-16 Block 60 (now the F-16E/F) shows an improvement from 45 to 70 nm (þ55%), while the F-15C range has increased from 60 to 90 nm (þ50%). Apart from the obvious improvement in range, it has been stated by a highly authentic source that AESA radar confers 10–30 times more in radar operational capability compared with a conventional radar (Report of the Defense Science Board Task Force, 2001).

The F-16E (single seat) and F-16F (two seat) are newer F-16 variants. The Block 60 version is based on the F-16C/D Block 50/52 and has been developed especially for the United Arab Emirates (UAE). It features improved AN/APG-80 Active Electronically Scanned Array (AESA) radar, avionics, conformal fuel tanks (CFTs), and the more powerful GE F110-132 engine. However the batch bought by Pakistan Air Force (F-16C/D) is equipped with AN/APG-68 (V)9 Radar Systems. Only the Block 60 aircraft, destined for the UAE, are to be equipped with a more advanced version – the Active Electronically Scanned Array (AESA) radar. The APG-68(V)9 offers 30 percent increase in detection range, improved search-while-track mode (four vs. two tracked targets) and larger search volume and improved track while scan performance. Its single target track performance has also been improved. On air/ground missions, the new radar becomes an effective sensor, utilizing its high-resolution synthetic aperture radar mode, which allows the pilot to locate and recognize tactical ground targets from considerable distances. Although previous radars had some Synthetic Aperture Radar (SAR) capabilities, the new version generates imagery-class (2 feet resolution) high resolutions pictures, comparable to pictures delivered by the most modern commercial satellites. These pictures can be acquired from very long range, at all weather conditions and provide an effective, real-time source for the targeting of long range, precision guided weapons. The radar also has increased detection range in sea surveillance mode, and enhanced ground moving target identification and mappinc capability. The radar features an inertial measurement unit that improves dynamic tracking performance and provides an auto-boresight capability, which increases accuracy.

Advertisements

2 Comments

Filed under AESA, APG-68, APG-80, Electronic Warfare, F-16, F-22, F-22 raptor, F-35, F/A-18, Fifth Generation Combat Aircraft, Flight Simulation, FLIR Systems, Foreign Office Pakistan, Lockheed martin F-16, Pakistan, Pakistan Aeronautical Complex, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Chief of Army Staff, Pakistan Defence, Pakistan-Afghnistan Border, RADAR, Radars, Radio Frequency, Saudi Arabia, Saudi Aviation, Sixth Generation Fighter Jet, US Department of Defense, US Navy

Boeing A160 – VTOL UAVs Comes to Age

FARNBOROUGH 2010: Boeing A160 Hummingbird

Farnborough 2010 (July.10) Boeing – A US aerospace company’s massive showing, included its own unmanned air vehicle pavilion. With an 11m (36ft) rotor diameter nearly as wide as the 10.7m autonomous helicopter is long, it is larger than other vertical take-off UAVs. But weighing in at 1,135kg (2,500lb), with its largely composite frame, it is also lighter, making up for the fact that it carries 45kg more than its weight in fuel. However, what makes the A160 unique is not something visible in its low-drag, reduced radar profile silhouette.

In conventional helicopters, the revolutions per minute of the rotors is normally locked in for a maximum forward speed, given weight and altitude considerations. At maximum forward speed, the tip of the advancing blade moves at speeds slightly under Mach 1, avoiding the drag and vibration seen at higher speeds. But being locked into a constant maximum rotor RPM also means that anything less that maximum forward speed – a hover, low-speed forward flight – the rotor is moving far faster than actually necessary, wasting fuel and creating drag, shortening the helicopter’s range. Humming Bird so far managed to fly at the speed of 165kt (305km/h) – with a service ceiling of between 20,000ft and 30,000ft and a range of around 2,500nm (4,620km). It is its blades that makes it unique, for range and speed compared to other in its class. For A160, the stiffness and cross-section of the rotor blades vary along their length. The low-loading hingeless design allows for changing RPMs to optimise efficiency at different speeds and altitudes. The Hummingbird has come a long way since the diesel-powered, variable-speed rotor experiment that was awarded a 30-month technology demonstration contract in March 1998. The first true Hummingbird prototype, a three-bladed design, debuted in December 2001 and had its first forward flight the following month at former US Air Force base at Victorville, California, using a Subaru engine.

In September 2003, DARPA awarded Frontier a $75 million contract for the design, development and testing of four A160s. By May 2004, Boeing had purchased Frontier from Karem. In August 2005, Frontier Systems – now a Boeing subsidiary – received a $50 million contract from the Naval Air Warfare Center Aircraft Division to examine the affordability of long-range VTOL UAVs for payload delivery. With no orders on the books, Boeing made the decision in late 2009 to put the helicopter into production, an unusual move in a business where manufacturers usually wait for a contract award or at least a military requirement before opening production. The A160 has already demonstrated its ISR capabilities to the US Army, as far back as 2008, at an annual C4ISR exercise at Fort Dix in New Jersey. Operating at the army’s Class IV UAV for the exercise, the Hummingbird integrated five different payloads for the event, Lavoranda says, including a 380mm (15in) Wescam electro-optical/infrared sensor ball and two mini tactical common datalink transceivers used to downlink full motion video from the EO/IR sensor Rover terminals to both mounted and dismounted troops with Rover terminals. The Hummingbird also proved its role as a communications relay, keeping two Humvees in contact when they moved out of the line of sight. In March, during six flights in two days, the A160 demonstrated its autonomous cargo delivery capabilities to the Marines, Wattam says, consistently delivering sling-loaded cargo within 1.2m of the target drop site. Furthermore, the A160’s proprietary, portable ground control system makes it possible to deliver cargo without a trained UAV pilot at the delivery site. After the UAV flies its pre-planned route, it stops and orbits until someone at the forward delivery location instructs it, with the touch of a button, to proceed to the inbound delivery point. Once there, another click tells it to hover over the delivery point. Adjustments can be made within a 1km range of the original delivery site before instructing the Hummingbird to lower its load, release the cable and head home on its predetermined path.

Unmanned Cargo Resupply Contract

K-MAX unmanned aircraft

According to the Sources Lockheed, together with manufacturer Kaman Aerospace, will get $45.8 million to operate the K-Max – who is copable of carrying 2721.6kg (6,000lbs) of cargo at sea level and more than 1,814.3kg (4,000lbs) at 10,000ft – while Boeing will receive $29.2 million to use its A160T Hummingbird to deliver cargo to Marines in Afghanistan. The Hummingbird, designated the YMQ-18A by the Pentagon, with its patented adjustable rotor speed technology, holds the record for endurance in its class, at 18.7h. In August 2010 the A160T Hummingbird underwent jungle test flights in Belize to test the ability of DARPA FORESTER foliage-penetrating radar to penetrate jungle cover. What makes this UAV unique is the incorporation of many new technologies – such as advance composite materials, Optimum Speed technology, ability to shift to another gear, and finally fthe uselage’s two large, stiff monocoque skins which help keep the frequency ranges of the structure outside the frequency ranges of the rotor as it changes its speeds.

Leave a comment

Filed under Afghanistan, Agusta Westland, ASN Technology, Attack helicopters, Boeing, Drone Technology, Drones, Flight Simulation, Global Aviation, Humming Bird, Information Operations, K-MAX, Predator, Radars, RQ-4 Global Hawk, U.S Drone Technology, U.S Marines, UAV, US Air Force, Vertical takeoff UAV

Electronic Warfare Operations – Part I

O divine art of subtlety and secrecy! Through you we learn to be invisible, through you inaudible; and hence hold the enemy’s fate in our hands. – Sun Tzu (The Art of War)

Wedgetail Flares Test

The advant of technology and understanding the control of electronmagnetic specturm (EM) has taken the description of warfare to another level. Modern military forces rely heavily on a variety of complex, high technology, electronic offensive and defensive capabilities. EW is a specialized tool that enhances many air and space functions at multiple levels of conflict. Modern weapons and support systems employ radio, RADAR, infrared, laser, optical and electro-optical technologies. Modern military systems, such as the E-8C joint surveillance, target attack radar system (JSTARS), rely on access to the electromagnetic spectrum to accomplish their missions. So what exactly Electronic Warfare is?

EW is any military action involving the use of the EM spectrum to include directed energy (DE) to control the EM spectrum or to attack an enemy. This is not limited to radio or radar frequencies but includes IR, visible, ultraviolet, and other less used portions of the EM spectrum. As giving air and ground forces a superiority – the application of EW was seen in Operation Desert Storm (Gulf War) – Where self-protection, standoff, and escort jamming, and antiradiation attacks, significantly contributed to the Air Force’s success. Within the information operations (IO) construct, EW is an element of information warfare; more specifically, it is an element of offensive and defensive counterinformation. Electronic Warfare comprises of three main components: Electronic Attack – Electronic Protection – and finally Electronic Warfare Support, all includes the integrated Information Operations (IO).

Key to Electronic Warfare success is the control of Electromagnetic Spectrum Control. This is usually achieved by protecting friendly systems and attacking adversary systems. In reference to above mentioned three components of EW – Electronic Attack, limits adversary use of the electronic spectrum; – Electronic Protection – protects the use of the electronic spectrum for friendly forces, and Electronic Warfare Support – enables the commander’s accurate estimate of the situation in the operational area. All three must be carefully integrated to be effective. Friendly forces must prepare to operate in a nonpermissive EM environment and understand EW’s potential to increase force effectiveness.

Electronic Warfare for Air Forces

Air Force electronic warfare strategy embodies the art and science of employing military assets to improve operations through control of the EM spectrum. An effective EW strategy requires an integrated mix of passive, disruptive, and destructive systems to protect friendly weapon systems, components, and communications-electronics systems from the enemy’s threat systems. During the Gulf War, EF-111 RAVENS were used successfully against Iraqi radars and communications facilities. Conflicts in Vietnam and the Middle East provided deadly reminders of the necessity for effective EW against advanced threats and of the intense effort required to counter these threats. Current technology has given rise to new enemy capabilities, which includes the use of microwave and millimeter wave technologies, lasers, electro-optics, digital signal processing, and programmable and adaptable modes of operation.

Douglas B-66 Destroyer during Vietnam War

During the Vietnam War EB-66 was used against terminal threat radars, surface to air missiles (SAM) and anti aircraft artillery (AAA) as well as used as stand-off jamming platforms. EB-66 modified version of U.S light bomber B-66 Destroyer (shown above). The RB-66C was a specialized electronic reconnaissance and ECM aircraft with an expanded crew of seven, including additional electronics warfare experts. A total of 36 of these aircraft were built with the additional crew members housed in what was the camera/bomb bay of other variants. RB-66C aircraft had distinctive wingtip pods and were used in the vicinity of Cuba during the Cuban Missile Crisis and later over Vietnam. In 1966, these were redesignated EB-66C. After the retirement of B-66, General Dynamics/Grumman EF-111A (shown below) Raven came to play the role. EF-111A Raven was an electronic warfare aircraft designed to replace the obsolete B-66 Destroyer in the United States Air Force. Its crews and maintainers often called it the “Spark-Vark”, a play on the F-111’s “Aardvark” then nickname.

An EF-111A Raven aircraft supplies radar jamming support while enroute to Eglin Air Force Base during the multi-service Exercise SOLID SHIELD '87.

EF-111A achieved initial operational capability, in 1983 EF-111s first saw combat use with the 20th Tactical Fighter Wing at RAF Upper Heyford during Operation El Dorado Canyon in 1986 (retaliatory attack on Libya), Operation Just Cause in 1989. The EF-111A served in Operation Desert Storm in 1991. On 17 January 1991, a USAF EF-111 crew: Captain James Denton and Captain Brent Brandon (“Brandini”) archived an unofficial kill against an Iraqi Dassault Mirage F1, which they managed to maneuver into the ground, making it the only member of the F-111/FB-111/EF-111 family to achieve an aerial victory over another aircraft.

Operational Concepts

The effective application of electronic warfare in support of mission objectives is critical to the ability to find, fix, track, target, engage, and assess the adversary, while denying that adversary the same ability. Planners, operators, acquisition specialists, and others involved with Air Force EW must understand the technological advances and proliferation of threat systems in order to enable friendly use of the EM spectrum. To control is to dominate the EM spectrum, directly or indirectly, so that friendly forces may exploit or attack the adversary and protect themselves from exploitation or attack. Electronic warfare has offensive and defensive aspects that work in a “movecountermove” fashion. To exploit is to use the electromagnetic spectrum to the advantage of friendly forces. Friendly forces can use detection, denial, disruption, deception, and destruction in varying degrees to impede the adversary’s decision loop. For instance, one may use electromagnetic deception to convey misleading information to an enemy or use an enemy’s electromagnetic emissions to locate and identify the enemy. To enhance is to use EW as a force multiplier. Careful integration of EW into air and space operations will detect, deny, disrupt, deceive, or destroy enemy forces in varying degrees to enhance overall mission effectiveness. Through proper control and exploitation of the EM spectrum, EW functions as a force multiplier and improves the likelihood of mission success.

Billion Dollar Market For Electronic Warfare

Forecast International’s “The Market for Electronic Warfare Systems” projects an estimated $28.4 billion will be spent over the next 10 years on the development and production of the major EW systems. Some 44,807 units of leading Electronic Countermeasures (ECM), Radar Warning Receivers (RWRs), Electronic Support Measures (ESM), and other EW systems that make up this analysis will be produced. The top-ranked EW producers cited in the analysis (out of a total of 22 companies considered) are Northrop Grumman, BAE Systems, Raytheon, ITT, and Lockheed Martin. While production of leading missile countermeasures systems has helped position some of these companies at the top of the ranking, others are leading the development of all-important, next-generation technology. It is important to add that today’s EW market leaders are firmly established because of their ability to provide much-needed EW systems for immediate deployment to the battlefield. To cite just one example, despite some defense budget tightening, the Pentagon is expected to spend over $560 million through FY13 on procurement of Northrop Grumman’s Large Aircraft Infrared Countermeasures (LAIRCM) system for various Air Force aircraft. The service has declared that its long-range desire is to equip a total of 444 aircraft with the system. The market for systems to defeat improvised explosive devices (IEDs) will also warrant close monitoring in the years ahead. With the recent surge of U.S. troops into Afghanistan, there has also been an increase in the occurrence of IED attacks. To counter these attacks, a competition is currently under way for development of a Counter Radio-Controlled Improvised Explosive Device (RCIED) Electronic Warfare (CREW) 3.3 system of systems. The U.S. Naval Sea Systems Command in October 2009 awarded firm-fixed-price contracts to two companies for CREW 3.3 System of Systems development. ITT Force Protection Systems was awarded $16 million, while Northrop Grumman Space and Mission Systems, Network Communication Systems was awarded $24.3 million. International ventures will also have a significant impact on the EW market through the new decade. The primary platform for ITT’s ALQ-214 Radio Frequency Countermeasures (RFCM) system is the U.S. Navy’s F/A-18E/F Super Hornet. Through its association with the jet fighter, a potentially growing export market for the ALQ-214 has begun to emerge. For example, the system will equip the F/A-18Fs purchased by Australia a stopgap measure until its F-35 fleet is ready for service.

I will continue the implementation and integration of three major components of Electronic Warfare in my next post. Please do check back

2 Comments

Filed under 20th Tactical Fighter Wing, Aardvark, AGm-113 Hellfire, ALQ-214 Radio Frequency Countermeasures, America's Army Rise of a Soldier, Anti Aircraft Artillery, Artificial Intelligence, Australian Military, B-66 Destroyer, Ballistic missiles, Boeing, Cold War, Cubian Missile Crisis, Dassault Mirage, Drone Technology, Drones, EB-66 Bomber, EF-111 Ravens, Electromagnetic Spectrum, Electronic Support measures, Fifth Generation Combat Aircraft, Flight Global, Flight Simulation, Global Aviation, Gulf War, I.E.D, Improvised Explosive Device, Information Operations, JSTARS, Large Aircraft Infrared Countermeasures, Lockheed Martin, Lockheed martin F-16, Maars, Microsoft, Milimeter Wave Radar, NASA, Operation Desert Storm, Predator, Radars, Radio Frequency, Raven, raytheon, RB-66C, Robotic Wars, Robots, RQ-4 Global Hawk, Russia, S-300 Missiles, Sikorsky, Soviet Union, surface-to-air missile, U.S Drone Technology, U.S Marines, Vietnam War

War Toys: Artificial Intelligence on Battlefield

Humanity at High-Tech

The following article was published in New York Times (27 November), written by John Markoff and can be accessed HERE As I highlighted the importance of unmanned vehicles in modern warefare, and use of electronic warefare equipment – this article highlighting the application of Artificial Intelligence (A.I) takes the discussion further by introducing the How Robots can win War for humans (if they can). Althogh it will not be fair to undermine the potential of human on war-ground, but a combination of drones in air, and robots on ground may serve the purpose well. However, one must not neglect the ethics involved, warefare rules and most important of all laws of Robotics.

While smart machines are already very much a part of modern warfare, the Army and its contractors are eager to add more. New robots — none of them particularly human-looking — are being designed to handle a broader range of tasks, from picking off snipers to serving as indefatigable night sentries. In a mock city here used by Army Rangers for urban combat training, a 15-inch robot with a video camera scuttles around a bomb factory on a spying mission. Overhead an almost silent drone aircraft with a four-foot wingspan transmits images of the buildings below. Onto the scene rolls a sinister-looking vehicle on tank treads, about the size of a riding lawn mower, equipped with a machine gun and a grenade launcher. Three backpack-clad technicians, standing out of the line of fire, operate the three robots with wireless video-game-style controllers. One swivels the video camera on the armed robot until it spots a sniper on a rooftop. The machine gun pirouettes, points and fires in two rapid bursts. Had the bullets been real, the target would have been destroyed.

“One of the great arguments for armed robots is they can fire second,” said Joseph W. Dyer, a former vice admiral and the chief operating officer of iRobot, which makes robots that clear explosives as well as the Roomba robot vacuum cleaner. When a robot looks around a battlefield, he said, the remote technician who is seeing through its eyes can take time to assess a scene without firing in haste at an innocent person. Yet the idea that robots on wheels or legs, with sensors and guns, might someday replace or supplement human soldiers is still a source of extreme controversy. Because robots can stage attacks with little immediate risk to the people who operate them, opponents say that robot warriors lower the barriers to warfare, potentially making nations more trigger-happy and leading to a new technological arms race. “Wars will be started very easily and with minimal costs” as automation increases, predicted Wendell Wallach, a scholar at the Yale Interdisciplinary Center for Bioethics and chairman of its technology and ethics study group.

Civilians will be at greater risk, people in Mr. Wallach’s camp argue, because of the challenges in distinguishing between fighters and innocent bystanders. That job is maddeningly difficult for human beings on the ground. It only becomes more difficult when a device is remotely operated. This problem has already arisen with Predator aircraft, which find their targets with the aid of soldiers on the ground but are operated from the United States. Because civilians in Iraq and Afghanistan have died as a result of collateral damage or mistaken identities, Predators have generated international opposition and prompted accusations of war crimes. But robot combatants are supported by a range of military strategists, officers and weapons designers — and even some human rights advocates.

“A lot of people fear artificial intelligence,” said John Arquilla, executive director of the Information Operations Center at the Naval Postgraduate School. “I will stand my artificial intelligence against your human any day of the week and tell you that my A.I. will pay more attention to the rules of engagement and create fewer ethical lapses than a human force.” Dr. Arquilla argues that weapons systems controlled by software will not act out of anger and malice and, in certain cases, can already make better decisions on the battlefield than humans.

“Some of us think that the right organizational structure for the future is one that skillfully blends humans and intelligent machines,” Dr. Arquilla said. “We think that that’s the key to the mastery of 21st-century military affairs.” Automation has proved vital in the wars America is fighting. In the air in Iraq and Afghanistan, unmanned aircraft with names like Predator, Reaper, Raven and Global Hawk have kept countless soldiers from flying sorties. Moreover, the military now routinely uses more than 6,000 tele-operated robots to search vehicles at checkpoints as well as to disarm one of the enemies’ most effective weapons: the I.E.D., or improvised explosive device.

Yet the shift to automated warfare may offer only a fleeting strategic advantage to the United States. Fifty-six nations are now developing robotic weapons, said Ron Arkin, a Georgia Institute of Technology roboticist and a government-financed researcher who has argued that it is possible to design “ethical” robots that conform to the laws of war and the military rules of escalation. But the ethical issues are far from simple. Last month in Germany, an international group including artificial intelligence researchers, arms control specialists, human rights advocates and government officials called for agreements to limit the development and use of tele-operated and autonomous weapons.

The group, known as the International Committee for Robot Arms Control, said warfare was accelerated by automated systems, undermining the capacity of human beings to make responsible decisions. For example, a gun that was designed to function without humans could shoot an attacker more quickly and without a soldier’s consideration of subtle factors on the battlefield. “The short-term benefits being derived from roboticizing aspects of warfare are likely to be far outweighed by the long-term consequences,” said Mr. Wallach, the Yale scholar, suggesting that wars would occur more readily and that a technological arms race would develop.

As the debate continues, so do the Army’s automation efforts. In 2001 Congress gave the Pentagon the goal of making one-third of the ground combat vehicles remotely operated by 2015. That seems unlikely, but there have been significant steps in that direction. For example, a wagonlike Lockheed Martin device that can carry more than 1,000 pounds of gear and automatically follow a platoon at up to 17 miles per hour is scheduled to be tested in Afghanistan early next year. For rougher terrain away from roads, engineers at Boston Dynamics are designing a walking robot to carry gear. Scheduled to be completed in 2012, it will carry 400 pounds as far as 20 miles, automatically following a soldier.

The four-legged modules have an extraordinary sense of balance, can climb steep grades and even move on icy surfaces. The robot’s “head” has an array of sensors that give it the odd appearance of a cross between a bug and a dog. Indeed, an earlier experimental version of the robot was known as Big Dog. This month the Army and the Australian military held a contest for teams designing mobile micro-robots — some no larger than model cars — that, operating in swarms, can map a potentially hostile area, accurately detecting a variety of threats. Separately, a computer scientist at the Naval Postgraduate School has proposed that the Defense Advanced Research Projects Agency finance a robotic submarine system that would intelligently control teams of dolphins to detect underwater mines and protect ships in harbors.

“If we run into a conflict with Iran, the likelihood of them trying to do something in the Strait of Hormuz is quite high,” said Raymond Buettner, deputy director of the Information Operations Center at the Naval Postgraduate School. “One land mine blowing up one ship and choking the world’s oil supply pays for the entire Navy marine mammal program and its robotics program for a long time.” Such programs represent a resurgence in the development of autonomous systems in the wake of costly failures and the cancellation of the Army’s most ambitious such program in 2009. That program was once estimated to cost more than $300 billion and expected to provide the Army with an array of manned and unmanned vehicles linked by a futuristic information network. Now, the shift toward developing smaller, lighter and less expensive systems is unmistakable. Supporters say it is a consequence of the effort to cause fewer civilian casualties. The Predator aircraft, for example, is being equipped with smaller, lighter weapons than the traditional 100-pound Hellfire missile, with a smaller killing radius.

Remotely controlled systems like the Predator aircraft and Maars move a step closer to concerns about the automation of warfare. What happens, ask skeptics, when humans are taken out of decision making on firing weapons? Despite the insistence of military officers that a human’s finger will always remain on the trigger, the speed of combat is quickly becoming too fast for human decision makers. “If the decisions are being made by a human being who has eyes on the target, whether he is sitting in a tank or miles away, the main safeguard is still there,” said Tom Malinowski, Washington director for Human Rights Watch, which tracks war crimes. “What happens when you automate the decision? Proponents are saying that their systems are win-win, but that doesn’t reassure me.”

Humanity at High-Tech

Robotics going at war doesn’t make sense to me, the whole idea of robots playing a meaningful role in a contemporary conflict is just sounds ridiculous – but apparently its not. A video based journey Humanity at High-Tech was compiled by Red Cross, who tend to believe that robots are playing an increasingly prominent role in modern conflict and throwing up all kinds of tricky ethical questions and dilemmas. The modern battlefield is changing beyond measure, from the Green Berets to Starship Troopers in the space of just 50 years. Who knows where we’re heading next? The whole idea of implementation and integration of Artificial Intelligence within battlefield will be in my next post.

Author: John Markoff

Leave a comment

Filed under Air Defence, Artificial Intelligence, Attack helicopters, Australian Military, Aviation, Call of Duty Modern Warefare, Current Affairs, Drone Attacks Pakistan, Drones, Engineering, Flight Global, Flight Simulation, Global Aviation, Global Times, I.E.D, Improvised Explosive Device, Laws of Robotics, Lockheed Martin, Maars, Microsoft, Milimeter Wave Radar, NATO, New York Times, Pakistan, Predator, Radars, Raven, raytheon, Robotic Wars, Robotic Weapons, Robots, U.S Drone Technology, U.S Marines, War on Terror

Pakistan International Airlines – Losses Continue to Flow

Pakistan International Airlines (PIA)’s public relations team seemed to be very active this month. A month started with Russian airspace closure to PIA’s flights – The restriction came at a time when Russia had liberalised its airspace through historic relaxation of its airspace regulations. According to the sources, this was resulted due to PIA’s late move to airspace renewal on-time. Since, Russia is a quickest way to get to Europe, this move offcourse have serious implictaions on ill-fated PIA, who is already suffering badly when it comes to figures. The move will result in 15 to 20 minutes of extra flying time for most of the flights from Pakistan to Europe, the United States and Canada and back and increase the cost of flights. About 80 flights a week using Russian airspace for overflight will be affected.

Getting Figures Right

The state-run airline currently services domestic and international routes with a fleet of Boeing 777, Boeing 747, Airbus A310, Boeing 737 and ATR-42 aircraft. PIA suffered a loss of 135.8 million dollars in the first nine months of the year, according to its third-quarter financial report posted on the airline’s website. Accumulated losses stood at 88 billion rupees (one billion dollars). The national flag-carrier plans to induct 16 new aircrafts, lay off over 4,000 non-essential employees and double its revenue though aggressive marketing in the next five years. Ailing state carrier Pakistan International Airlines (PIA) is asking the government, saddled with its own mounting debt, to write off losses of 1.7 billion dollars to save it from looming bankruptcy – Now this is like putting an extra burden on billion dollar debt government.

Violation of airline safety conduct

PIA was created out of private airline Orient Airways in 1955, just eight years after Pakistan came into existence, and today has a fleet of 40 planes, a combination of Boeing 747s, 777s, 737s, Airbuses and ATR aircraft. Performing well until the 1970s when corruption and overstaffing hit company fortunes, PIA’s reputation was further battered in the 1980s as it failed to maintain its fleet. The airline recently imposed new rules to force pilots to fly on its terms, after a row over working hours and pension benefits led pilots to adopt an unofficial “go slow” protest leading to flight delays. Pilots said they were routinely forced to fly 12 hours per day, two hours more than the civil aviation rules allow, and occasionally for as long as 18 hours. Violation of airline safety conduct is something of a norm to PIA, but its not just PIA, the recent accident of Airblue also rasied the issue to retiring age of Captain and number of flights. To my knowledge of travelling with national flag, PIA operates B777, from New York to Karachi/Lahore – the route in past was operated by B747, who was used to make regular stops at Manchester to pick/drop passengers. This has not only reduced the operating life of the aircraft but also, cabin environemnt was no less than an attraction to newly board passengers like me, who see half of the cabin full of dead bodies. Excessive operation of used jumbos, resulted in 747 ban to European airspace, which finally resulted in grounding these plans. Now same routine is being adapted by B777. Worse of all, I have also travelled in PIA’s A310-300 who marginally meets the distance requirements of 3500 nautical miles distance between Manchester and Lahore.With 9 Boeing 777 in service (both long and extended range) why I had to travel on A310, I simply don’t know, may B777 were busy somewhere else. So far most of the planes operational in PIA including new 777 is active on conventional manual controls – some not even incorportaing the Glass Cockpit technology. Almost any new highly automated aircraft is brought down technologically by PIA engineers. Its not that PIA’s pilots aren’t interested in new technology, its PIA who is not bother to spend on training.

Enterprise Resources Planning (ERP) system

The national flag-carrier plans to induct 16 new aircrafts, lay off over 4,000 non-essential employees and double its revenue though aggressive marketing in the next five years. Under a five-year strategic programme, the PIA plans to acquire an Enterprise Resources Planning (ERP) system and implement it across the organisation to streamline business processes, strengthen controls and introduce financial discipline. An ERP is an integrated computer-based application used to manage internal and external resources including tangible assets, financial resources, materials and human resources. Under the programme, a sound system of internal controls will be established. The management is set to have a zero-tolerance policy for fraud and irregularities. A set of strategies will be implemented to turn around operations and make PIA a sustainable and profitable entity.Growth in revenue will be achieved through induction of new aircraft and expansion of the existing network. The airline also plans to pass on the increase in fuel prices to customers as it believes that the rapid escalation of airline expenditure in the recent past is mainly due to an unprecedented increase in fuel prices. Realising that retention of ageing 747 aircraft means continued increase in maintenance cost, the old aircraft will be phased out. Replacing the ageing 737 aircraft is a priority while the A310 aircraft will be replaced as and when financial resources allow investment. The 737NG or A320 are being considered as replacement. ATRs (short-haul European aircraft) will be acquired to increase frequency and capacity on socio-economic routes. It is planned to retain all types of 777 and ATRs in the fleet beyond 2014. During Haj season one 777 will be acquired on wet lease in each year from 2012 to 2014 when an A310 is also planned to be inducted into the fleet. Operational restructuring and human resource rationalisation is also part of the survival and turnaround plan as overstaffing is one of the PIA’s main problems which involves significant costs, clogs communications channels, diverts management’s attention from key airline issues and makes job responsibilities more obscure.

Enterprise Resources Planning (ERP) – if implemented it may serve the purpose, but I must point out that success of ERP implementation highly relies on investment in training (for IT personnel) as well as the coporate policy protection of the data, as well as controlling the way it is been used under ERP. I see this as a big transition, so big that I fear of the PIA implementation and data protection under ERP system. The blurring of company boundaries can cause problems in accountability, lines of responsibility, and employee morale. Furthermore, Once a system is established, switching costs are very high for any partner (reducing flexibility and strategic control at the corporate level).

Many have blamed privatisition and years of bad planning for the fate of PIA, it is actually the years of corruption, nepotism, bad management and poor planning, that is truely responsible for the loss the airline is suffering today.

1 Comment

Filed under Airbus A310-300, Boeing, Boeing 737 next generation, Boeing 777, Boeing 787, Engineering, Flight Global, Flight Simulation, Foreign Office Pakistan, Global Aviation, Islamabad, Manchester, Ministry of Defence Pakistan, Orient Airways, Pakistan, Pakistan Aeronautical Complex, Pakistan Defence, Pakistan International Airlines

Game Controllers to Drive Drones

In my previous post of I highlighted the issue of Playstation Mentality Warning that the technology is making target killings much easier and more frequent, a report issued by New York Times raised concerns that drone operators based more than thousand miles away from the battlefield, risk developing a PlayStation mentality towards killing.

War really is getting more like a video game, as hardware and software from the gaming industry is increasingly being adopted for military use. Although evidence of this statement can be found within U.S military camps, but amazingly this Farnborough (F-2010 Air Show) Raytheon showed off its new Universal Control System for robotic aicraft. It’s based on the same technology that drives Halo and Splinter Cell. Amazing Right ? These kind of projects or statements are usually balanced by either cost factor or Human machine Inteferance, since gaming industry is spending millions to develop high definition graphics and user friendly interface, why not put them on UAVs – this saves money to military. Post-1990 time has seen large increase in simulation use for pilot training within civilian and military market. Within civilian, simulations are used to provide airlines with a cost effective training, preventing risks by first time flyers but also its saves fortunes. Now the same arguments can be applied to gaming and warefare industry.

Right now, every military command post and every training center is packed with PCs. In the future, many of those machines might be replaced with game consoles — if the armed forces can ever work out their disagreements with the console-makers. Surveys show that young people now spend more time gaming on consoles than on PCs. It’s the older (well, at least over 30) crowd who prefer to play games on computers, and that crowd is likely to shrink over time. If the Pentagon is going to rely on games, then it makes sense to use a platform designed for games, as well as one that’s familiar to your audience.

UAVs at your door: Call of Duty UAV simulation

Yet the real beauty of consoles, as far as the Army’s game gurus are concerned, isn’t really technical sophistication. More war games are available in market today, then there were few years back. Games like Halo, Warcraft, Conflict: Global Terror, Sniper Elite, America’s Army: Rise of a Soldier, Battlefield 2: Modern Combat, H.A.W.X, Call of Duty and many more. For some reason, a major resurgence of the war-themed videogame has occurred for the this-gen Xbox. Awhile back, you couldn’t miss a Vietnam-era title on the shelf, but now it looks like the World War era is the subject matter of choice. So will the Army go out and buy the Xbox? I don’t know how serious military personal are on buying these consoles, but one thing for sure, if they do buy then there will certainly be a shortage of these consols. Microsoft was concerned that “do we want the Xbox 360 to be seen as having the flavor of a weapon? – Offcourse

Leave a comment

Filed under Afghanistan, America's Army Rise of a Soldier, Attack helicopters, Aviation, Battlefield 2, Black Hawk, Black Ops, Call of Duty Modern Warefare, Cold War, Drones, Fifth Generation Combat Aircraft, Flight Global, Flight Simulation, Halo 3, Microsoft, Pentagon, Playstation III, Random, raytheon, Sniper Elite, Tom Clancy, Xbox

Sino-Pakistani Ties: JF-17 to carry Chinese missiles SD-10

Domestic SD-10 medium-range air-intercept missile

Further signs of deepen military cooperation between Islamabad and Beijing was seen today, when recently Pakistan Air Force decided to buy air-to-air SD-10 (shown above) – (said to be a variant of Italian Aspide missiles supplied to China in late 80s) missiles and avionics to arm its 250 JF-17 Thunder fighter fleet from China. Air Chief Marshal also revealed that his country may also opt to acquire other advanced defence missile systems including Chinese Surface to Air Missiles (SAM) systems. Pakistan has opted to go in for full Chinese armament systems for the jointly developed fighters, furthermore, SD-10 (mid-range missile) will become the standard Beyond Visual Range (BVR) weapon of the JF-17. This clearly seems that Pakistan Air Force has no plans to install wetern devices on its recently built combat aircraft. The first 50 JF-17s entering Pakistan Air Force service will most likely incorporate only Chinese avionics and other systems, however this may only be temporary. Once JF-17 enters full production, retractable in-flight refueling probes will be added and avionics from other sources may be integrated. Like other partnerships between two nations, it is obviously very impressive but “so called” chinease replicas do not sound appealing to me, what concerns me here is SD-10s’ life span compared to fifth generation amrs out there. However, I do hope they have long enough shelf life.

JF-17 can be armed with up to 3,629 kg (8,000 lb) of air-to-air and air-to-ground ordnance, as well as other equipment, mounted externally on the aircraft’s seven hardpoints. One hardpoint is located under the fuselage between the main landing gear, two are underneath each wing and one at each wing-tip. Internal armament comprises one 23 mm GSh-23-2 twin-barrel cannon mounted under the port side air intake, which can be replaced with a 30 mm GSh-30-2 twin-barrel cannon. The PAF is also seeking to arm the JF-17 with a modern fifth generation close-combat missile such as the IRIS-T or A-darter. These will be integrated with the helmet mounted sights/display (HMS/D) as well as the radar for targeting.

JF-17 Thunder

Global Times quoting unnamed sources claimed that the French consortium has withdrawn from a reported 1.2 billion euro contract to supply radars and missiles for the first wave of 50 JF-17 fighters, after pressure from India. French sources had reported that a joint bid had been made by French aeronautic company ATE along with Thales Group and MBDA. The Pakistan Air Force Chief is currently on a visit to China to attend the Zhuhai Air Show now underway in southern China, where the JF-17s were a major attraction.

Nov. 16 (China Military News cited from APP): Air Chief Marshal Rao Qamar Suleman, Chief of Air Staff, pakistan Air Force (PAF), said on Tuesday that pakistan-China joint production JF-17 Thunder fighter jet has bright prospects in the international aviation market. It has many added features which make it much more attractive than any other fighter aircraft of its category, said the Air Chief. A low price tag and much less maintenance and operational cost compared to the other planes of its class make it attractive for the buyers, he said. Pakistan, having the second biggest fleet of aircraft after host China, is participating for the first time in this exhibition. As many as ten K-8 trainer aircraft and three JF-17 fighters are taking part in the show that demonstrates the all-weather and time-tested friendship between the two countries. To a question regarding further expansion of cooperation between Pakistan Air Force and China, Rao Qamar Suleman replied that the two brotherly neighboring countries have a long history of cooperation in all fields particularly defence. He expressed the confidence that with the passage of time these bonds of friendsip would further consolidate.

Leave a comment

Filed under Air Show China 2010, Aviation, Chengdu Aircraft, China, China Defence, Chinease Defence, Current Affairs, Dassault Mirage, F-16, Fifth Generation Combat Aircraft, Flight Global, Flight Simulation, Global Aviation, Global Times, HMS/D, India, Islamabad, JF-17, JF-17 Thunder, K-8, Lockheed martin F-16, MBDA, Milimeter Wave Radar, Pakistan, Pakistan Aeronautical Complex, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Defence, Pakistan-China, Rao Qamar Suleman, SD-10 Missile, Shenyang J-15, Thales Group, Zhuhai 2010, Zhuhai Air Show