Category Archives: Lockheed Martin

Intellegent Warfare: Electronic Support Measures and Application of HARM Missile

USS KITTY HAWK (CV 63), At Sea (November 9, 2005) – Aviation Ordnanceman prepare to load a CATM-88 Harm missile onboard the USS Kitty Hawk (CV-63). While at sea, Kitty Hawk and Carrier Strike Group 5 will be participating in an annual exercise with the Japanese Maritime Self Defense Force. Currently underway in the western Pacific Ocean, Kitty Hawk Carrier Strike Group demonstrates power projection and sea control as the Navy's only permanently forward-deployed aircraft carrier strike group, operating from Yokosuka, Japan. U.S. Navy photo by Photographer’s Mate 3rd Class (AW) Jonathan Chandler.

After writing few posts discussing the technological influence on defence stratagies of different nation, this time I thought to go slightly technical. A reader may use this information as an extension of my discussion on Electronic Warfare – Electronic Warfare Operations Warfare has always been conducted by adversaries who have been at great pains to understand their enemy’s strengths and weaknesses in order to minimise the risk to their own forces and territory. The detection and interception of messages and the efforts to deceive the enemy have long been the task of the ‘secret service. As methods of communication developed, so too did methods of interception become more effective. Radar has developed from a mere detection mechanism to a means of surveillance and guidance. This post is focuses on gathering information on immediate threats which is performed by Electronic Support Measures (ECM)

MH-53 Pave Low helicopters prepare to take off for their final combat mission on Sept. 27, 2008, in Iraq. The MH-53, the largest and most technologically advanced helicopter in the Air Force with a record dating back to the Vietnam War, was retired from the Air Force inventory on Sept. 30, 2008

Electronic Warfare (EW) planning requires a broad understanding of enemy and friendly capabilities, tactics, and objectives. Employment of EW assets must be closely integrated into, and supportive of, the commander’s overall planning effort. This planning requires a multidisciplined approach with expertise from operations (ground, airborne, space), intelligence, logistics, weather, and information. Application of this sort of EW planning and employment was seen in Operation Desert Storm in 1991. three US Air Force MH-53J PAVE LOW helicopters (shown above) led nine US Army AH-64 Apache helicopters across the Saudi Arabia-Iraq border to attack two Iraqi early warning radar sites. Taking down these two sites opened the door for attacks across Iraq by F-117s, other coalition aircraft and Tomahawk missiles (shown below).

Block IV Cutaway - Raytheon

After the F-117s and cruise missiles came conventional aircraft. From 0355L to 0420L (H+55 to H+1:20) large numbers of USAF, USN, USMC, RSAF, and RAF aircraft smashed Iraqi air defenses and fields from H-3, an airfield located in western Iraq, to Ahmed Al Jaber, an airfield in occupied Kuwait. Two packages of aircraft, one a USN package from the Red Sea carriers and the other a USAF package from the south pointed directly at Baghdad. These “gorilla” packages were intended to seem threatening enough to force the Iraqis to hurl their air resources in defense. Air Force ground-launched BQM-34 and Navy tactical air-launched decoys (TALD) mimicked the radar return of conventional aircraft to further arouse Iraqi radar operators, many already confused by the absence of central control from Kari. Finally, radar-jamming aircraft radiated blanketing electronic emissions that drove the Iraqi radar operators to go to full power in an attempt to break through the interference. Then, the two incoming coalition flights revealed their true nature and pounced in a shrewd and devastating ruse.

The newest upgrade is a joint venture by the Italian Ministry of Defense and the US Department of Defense: the AGM-88E Advanced Anti Radiation Guided Missile (AARGM), produced by Alliant Techsystems.

What was unique here that, instead of bomb-carrying fighter-bombers, they were radar-killing electronic warriors carrying AGM-88 high-speed antiradiation missiles (HARMS) designed to home in on SAM and AAA radar (shown above). The AGM-88 High-speed Anti-Radiation Missile (HARM) is a tactical, air-to-surface missile designed to home in on electronic transmissions coming from surface-to-air radar systems. Originally developed by Texas Instruments (TI) as a replacement for the AGM-45 Shrike and AGM-78 Standard ARM system. Production was later taken over by Raytheon Corporation (RAYCO) when they purchased TI’s defense business. The AGM-88 can detect, attack and destroy a radar antenna or transmitter with minimal aircrew input. The proportional guidance system that homes in on enemy radar emissions has a fixed antenna and seeker head in the missile’s nose. A smokeless, solid-propellant, dual-thrust rocket motor propels the missile at speeds over Mach 2. HARM, a Navy-led program, was initially integrated onto the A-6E, A-7 and F/A-18 and later onto the EA-6B. USAF F-4G Wild Weasels alone expended dozens of HARMS in twenty minutes, while USN/USMC F/A-18s fired one hundred for the night. HARMS filled the air over Baghdad, the site of over one-half of Iraq’s SAM and AAA batteries. Foolishly, the Iraqis did not turn off their radars, even when the HARMS fireballed in their midst; as one USAF flight leader averred, ‘the emitters came on and stayed on for the entire flight of the missiles.’ This deadly surprise not only destroyed many Iraqi radars, it also terrified their operators. For the rest of the war, they showed great reluctance to use radar and often chose to launch their SAMs with optical or even no guidance.

High-speed Anti-Radiation Missile (HARM) – A Little Overview

The initial HARM attack and the F-117 bombings of the Kari system left Iraq’s integrated air defense system shattered, opening up the country so completely that, within days, coalition air-to-air tankers regularly operated in Iraqi airspace. Other non-stealthy aircraft pummeled Iraqi airfields. An anti-radiation missile (ARM) is a missile which is designed to detect and home in on an enemy radio emission source. Typically these are designed for use against an enemy radar, although jammers and even radios used for communication can also be targeted in this manner. This sort of weapons are key to EW inventory. The word “Radiation” here refers to Electromegnetic radiation, not nuclear. The missile is the direct descendant of the Shrike and Standard ARM missiles used in Vietnam. Most ARM designs to date have been intended for use against ground-based radars. Commonly carried by specialist aircraft in the SEAD (Suppression of Enemy Air Defense) role (known to the USAF as “Wild Weasels”), the primary purpose of this type of missile is to degrade enemy air defenses in the first period of a conflict in order to increase the chances of survival for the following waves of strike aircraft. They can also be used to quickly shut down unexpected SAM sites during a raid. Aircraft which fly with strike aircraft to protect them from enemy air defences often also carry cluster bombs and are known as a SEAD escort. The cluster bombs can be used to ensure that after the ARM disables the SAM system’s radar, the command post, missile launchers, and other components or equipment are also destroyed to guarantee the SAM site stays down.

The R-27 is manufactured in infrared-homing (R-27T), semi-active-radar-homing (R-27R), and active-radar-homing (R-27AE) versions, in both Russia and the Ukraine. The R-27 missile is carried by the Mikoyan MiG-29 and Sukhoi Su-27 fighters, and some of the later-model MiG-23MLD fighters have also been adapted to carry it.

The above account of the First Night of Operation Desert Storm was taken from the Decisive Force: Strategic Bombing in the Gulf War by Richard G. Davis. More recently, air-to-air ARM designs have begun to appear, notably the Russian Vympel R-27P. Such missiles have several advantages over other missile guidance techniques; they do not trigger radar warning receivers (conferring a measure of surprise), and they can have a longer range (since battery life of the seeker head is the limiting factor on the range of most active radar homing systems).

Electronic Support Measures

Technically ESM consists of a collection of senstive antennas designed to detect signals in different frequency bands. Often these antennas are grouped at aircraft’s wing tip pod, which allows a wide angle view without causing too much obstruction as well as to enable a fix on the signal source to obtain an accurate Dircection of Arrival (DoA) of the signal. An effective ESM system rapidly identifies the signal band and location, and determines the signal characteristics. A signal analyser then examines the signal characteristics to identify the type of transmitter and the level of threat posed. Even the most cursory of analysis can establish whether the emitter is associated with surveillance, target tracking or target engagement. This analysis can compare the signal with known emitter characteristics obtained from an intelligence database or threat library and known signal types confirmed and new emissions identified and categorised. Every signal identification is logged with date, time and intercept coordinates, along with the known or suspected platform type, and the results are stored.

ESm Pods on Nimrod: As well as providing threat information, ESM is used by maritime and battlefield surveillance aircraft as a passive or listening sensor which adds important information to other sensors. It is especially useful when tracking submarines

Signals received by the electronic support measures system may in some cases be analysed instantaneously to produce an identity for the transmitter of each signal received. Pulse width, Pulse amplitude and carrier frequency are few important parameters. The nature of the pulse shape is used to determine the particular type of transmitter. The scan rate and the pattern of the scan also provide invaluable information about the mode of the transmitter. It is possible to detect the antennas changing from scanning mode to lock-on to tracking and hence determine the threat that the transmitting station poses. As well as providing threat information, ESM is used by maritime and battlefield surveillance aircraft as a passive or listening sensor which adds important information to other sensors.

The salient signal characteristics or discriminators identified during the ESM collection and identification process includes: Signal Frequency (this is to detect the radar type), Blip/Scan ratio (to get the estimate for scan rate, sector scan width and radar bandwidth), Scan Rate, Scan Pattern (Search, track, track-while-scan (TWS) and ground-mapping (GM) modes will exhibit particular characteristics), Signal Modulation (Pulse, pulse compression, pulsed Doppler (PD), a continuous wave (CW) and other more sophisticated forms of modulation are indicative of the emitter mode(s) of operation and likely threat level) and finally Pulse Repetition Frequency (PRF).

Technical details as well as the schemetic of the ESM system can found in any dedicated military systems book, however, those who are Interested to explore more, I will strongly recommend Military Avionics Systems by Ion Mior and Allen Seabridge.

The combination of analysis of all these modes of operation and when they are employed either singly or in combination is vital to establishing the likely capabilities and intentions of a threat platform, especially when used in combination with other intelligence information. Electronic Support Measures may be employed at a strategic intelligence-gathering level using an AWACS (airborne early warning and command system) or MPA aircraft to build the overall intelligence picture and electronic order of battle (EOB). Alternatively, such information may be gathered and utilised at a tactical level using radar warning receivers (RWR), whereby information is gathered and used at the strike platform level to enable strike aircraft to avoid the most heavily defended enemy complexes during the mission.

As I mentioned earlier, this (ESM) is one element of Electronic Warfare. This is because the nature of EW warfare and devices used. The operating frequency ranges for radars are usually very broad, and no single system can cover the whole range for transmission or reception. Hence, most communications and radar systems are designed for use in specific bands. These bands are usually designated by international convention. The main role of electronic warfare is to search these radio-frequency bands in order to gather information that can be used by intelligence analysts or by front-line operators. The information gained may be put to immediate effect to gain a tactical advantage on the battlefield; it may be used to picture the strategic scenario in peace time, in transition to war, or during a conflict. It may also be used to devise countermeasures to avoid a direct threat or to deny communications to an enemy. It must also be observed that such tactics are deployed by all sides in a conflict – in other words, the listeners are themselves being listened to.

1 Comment

Filed under AAR Corporation, AARGM, Afghanistan, AGm-113 Hellfire, AGM-154 JSOW, Agusta Westland, Air Defence, Anti-Radiation Missiles, ASN Technology, ASN-229A UAV, Asymmetric Weapons, AWACS, Black Hawk, BQm-34, CIA, Cold War, Direct Energy Warfare, Direct Energy Weapons, Electromagnectic Pulses, Electromagnetic Spectrum, F-117, F/A-18, HARM, Lockheed Martin, Lockheed martin F-16, MH-53, MH-53 Pave, NATO, Navy tactical air-launched decoys, Northrop-Grumman, Operation Desert Storm, People Liberation Army, R-27, RAF Nimrod, RSAF, S-400 missiles, Sea King, SEAD, Sukhoi, Sukhoi PAK-FA, Sukhoi Su-33, surface-to-air missile, TALD, Tommahawk missiles, U.S Marines, US Department of Defense, US Navy, USMC, USS Kitty Hawk, Vietnam War, Wild Weasels

Nuclear Doctrine of Pakistan: Dilemmas of Small Nuclear Force in the Second Atomic Age

Dilemmas of Small Nuclear Forces, 4-series of articles highlighting the Nuclear Doctrine of Pakistan, its command and control system. The series contain 3 articles: First article (below) explore the Rise of Nuclear Deterrence, Second: is subjected to Post-1998 Doctrinal Contemplation, Third: Confidence-Building Measures between India and Pakistan, and Fourth: concludes with the military objectives of Pakistan’s nuclear weapons and highlights from the Nuclear Security Summit 2010.

Pakistan regards its nuclear weapons as its most precious strategic asset which constitutes the ultimate guarantor of nation's existence. This is encapsulated in an article by Gen Mirza Aslam Beg titled 'Pakistan's Nuclear Imperatives' wherein he wrote "Oxygen is basic to life, and one does not debate its desirability, nuclear deterrence has assumed that life-saving property for Pakistan.

A doctrine could be defined as a set of principles formulated and applied for a specific purpose, working towards a desired goal or aim. A nuclear doctrine would consequently consist of a set of principles, and instructions for the employment or non-employment of nuclear weapons and other associated systems. Until 2005, India and Pakistan were the only states outside the Nuclear Nonproliferation Treaty to declare, openly, their nuclear weapons capability. In 1998, they tested nuclear weapons and since then, deployed ballistic missiles, enunciated nuclear doctrine, and made organizational changes to their nuclear establishments. In 2002, they teetered on the brink of war in Kashmir. The second half of this article dilate somewhat the factors that have conceived the concept which has formulated the nuclear doctrine of Pakistan. I certainly believe that in South Asia a balance of power cannot be maintained by conventional means alone. This article endeavours to construct a proto Pakistani nuclear use doctrine from its declaratory and operational postures, in particular from the statements and interviews of the Pakistani political and military leaders and government officials. Initially reflecting upon its pre-1998 nuclear strategy, which has got critical implications for the post-tests doctrinal contemplation.

Pakistan is believed to have been developing a nuclear capability since the early 1970s. In May 1998, Pakistan responded to India’s nuclear tests by testing a series of nuclear weapons and declaring itself a nuclear weapon power. Pakistan, like India, has supported comprehensive disarmament proposals at the United Nations and Conference on Disarmament, but did not join the CTBT for similar reasons as India. Pakistan has proposed a number of bilateral or regional initiatives which India has not supported. These include a Nuclear Weapons Free Zone in South Asia and joining the NPT. India opposes these on the grounds that they do not address the nuclear threat India faces from China and the other NWS. Pakistan and India have concluded a number of bilateral confidence building measures including a hot-line agreement and an agreement not to attack each other’s nuclear power facilities.

While all these (including Pakistan, India, North Korea and Israel) small nuclear powers are in the process of developing their nuclear force structures, two key questions that have arisen are: How, when and for what purposes do they plan to use nuclear weapons? And what command. The word “small” here distinguishes these nation and their doctrines from U.S.A, UK, France and Russia. Prime focus is to understand the emerging structure of Pakistan’s Nuclear Doctrine.

President Barack Obama greets Pakistan's Prime Minister Yusuf Raza Gilani at the Nuclear Security Summit in Washington April 12, 2010. REUTERS/Kevin Lamarque

In The Myth of Independence, Zulfikar Ali Bhutto (president of Pakistan in December 1971) argued that modern wars should be conceived of as total wars, and in this type of war Pakistan needed nuclear weapons. Bhutto’s thinking, as will be analysed below, had far-reaching impacts on Pakistan’s nuclear strategy, and on its doctrinal contemplation. Soon after assuming Presidency of Pakistan on 20th December 1971 he took the decision to initiate a nuclear weapons project. This decision was taken against the backdrop of three specific factors: firstly, it was a direct consequence of the 1971 war where Pakistan’s conventional inferiority was demonstrated for the third time, at the cost of almost half of its territory; secondly, Pakistani leaders in general (particularly Bhutto) were convinced that India was determined to build a nuclear arsenal; and thirdly, Bhutto believed that only nuclear weapons could guarantee the national survival of Pakistan against the Indian threat.8 It is evident that Pakistan’s nuclear weapons project was initiated to deter Indian nuclear as well as conventional aggression, an aim that endured in the subsequent years and today constitutes one of the central pillars of Pakistan’s nuclear use doctrine.

Brass Tacks Crisis – First Nuclear Deterrence Posture [1986-1987]

After India and Pakistan held nuclear tests in 1998, experts have debated whether their nuclear weapons contribute to stability in South Asia. Experts who argue that the nuclear standoff promotes stability have pointed to the U.S.-Soviet Union Cold War as an example of how deterrence ensures military restraint.

First employment of Pakistan’s nuclear deterrent stratagy was during the 1986-1987 brasstacks crisis between India and Pakistan. With the crisis peaking in January 1987, India had deployed 400,000 troops, or about half the Indian army, within 100 miles of Pakistan. It began when India had launched the largest ever military exercises in the subcontinent, called Operation Brass Tacks. The exercise would take place not in India’s far north, where the always tense state of Kashmir is located, but in the desert area of Rajastan, a few hundred miles from the Pakistani border, which, a the Pakistani government was sure to note, was and ideal location from which to launch a cross border operation into the Pakistani state of Sindh that could cut Pakistan in half. The exercises included bulk of Indian Army, and was comprised of the nine infantry, three mechanised, three armoured and one air assault divisions, and three armoured brigades under four corps HQ with all theparaphernalia for a real war, concentrated on Pakistan’s sensitive border areas. This was bigger than any NATO exercise – and the biggest since World War II. Also planned was an ambitious amphibious operation by the Indian Navy with one division, in Korangi area of Karachi. Another feature of the exercise was a decision by General Sundarji to integrate Indias special weapons, including tactical nuclear into day-to day field maneuvers of the troops.

Pakistani military analysts saw Brass Tacks as a threatening exhibition of an overwhelming conventional force. Some even suspected that India wanted to launch swift surgical strikes at the Sikh terrorists’ training and planning sites inside Pakistan. Pakistan responded with maneuvers of its own that were located close to India’s state of Punjab. The crisis atmosphere was heightened when Pakistan’s premier nuclear scientist Abdul Qadir Khan revealed in a March 1987 interview that Pakistan had manufactured a nuclear bomb. Although Khan later retracted his statement, India stated that the disclosure was “forcing us to review our option.” Interview by Dr A.Q Khan’s interview to Indian journalist, Kuldip Nayar records:

what the CIA has been saying about our possessing the bomb is correct and so is the speculation of some foreign newspapers … They told us that Pakistan could never produce the bomb and they doubted my capabilities, but they now know we have done it … Nobody can undo Pakistan or take us for granted. We are there to stay and let it be clear that we shall use the 10 bomb if our existence is threatened.

Formal and impromptu talks between the leaders of the two countries finally resulted in a number of new CBMs between India and Pakistan. These were important and covered a number of areas. For example, the Agreement on the Prohibition of Attack against Nuclear Installations and Facilities was signed on December 31, 1988, in Islamabad by the two foreign secretaries and witnessed by the two prime ministers, Rajiv Gandhi and Benazir Bhutto, respectively. Earlier fears of impending attack on the facilities resulting in an all-out war fed the need for the agreement.

Kashmir – Second Nuclear Deterrence Posture [1990]

Kashmir has been a flashpoint since Indian and Pakistani independence in 1947. Many analysts have feared that nuclear weapons could be used if conventional hostilities over Kashmir were to spiral out of control, especially if, as in 1965 Indo-Pakistan conflict

Pakistan again advanced a nuclear deterrent posture in 1990 in the context of a spiralling crisis over the disputed territory of Kashmir, which developed against the backdrop of an acute separatist insurgency in the Indian. Reportedly, New Delhi planned for surgical air strikes against the militant training camps inside Pakistani territory, which prompted Islamabad to assemble a crude nuclear bomb and modify several American supplied F-16 aircrafts for its delivery. The crisis was eventually averted through diplomatic intervention from Washington, but Islamabad firmly believed that Pakistan’s deterrence posture prevented India from carrying out the planned strike. This crisis also marked the emergence of a nascent mutual nuclear deterrence in the Indo-Pakistani context.

Command and Control of Nuclear Deterrence

What did emerge during this period, primarily in the context of the 1986-87 Brasstacks crisis and the 1990 Kashmir episode, was a general notion of nuclear deterrence, which implied that Pakistan would use nuclear weapons to counter India’s nuclear as well as conventional aggression. to build a robust nuclear command structure. However, former Army chief of staff General Mirza Aslam Beg has claimed that the Pakistani leadership realised the necessity of establishing a command structure,

given the tension, mutual mistrust and suspicion between India and Pakistan, it is dangerously tempting for each to launch an attack before being attacked which could escalate to a nuclear level.

Bhutto had established a National Nuclear Command Authority (NNCA) in the 1970s, which institutionalised the nuclear decision-making and assumed the responsibility of developing a nuclear force structure and appropriate alert posture. (‘NNCA Responsible for Safeguarding Nuclear Programme, The News, 2 June 1998).

Pakistan Nuclear Capabilities and Thinking

Most observers (SIPRI Yearbook 1995, Bulletin of Atomic Scientists, 1998) estimate that Pakistan has enough nuclear material (highly enriched uranium and a small amount of plutonium) for 30 to 50 nuclear weapons. Like India, Pakistan is thought to have a small stockpile of nuclear weapons components and can probably assemble some weapons fairly quickly. Pakistan could deliver its nuclear weapons using F-16s (shown above) it purchased from the United States provided the appropriate “wiring” has been added to make them nuclear-capable. In the 1980s, Pakistan moved assiduously to acquire ballistic missile capabilities and now deploys short-range ballistic missiles and a small number of medium-range missiles. AQ Khan, former head of Khan Research Laboratories, maintained that only the medium-range Ghauri missiles would be usable in a nuclear exchange (given fall-out effects for Pakistan of shorter-range missiles). Other observers view the 30 to 50 Hatf2 short-range (300km) missiles (modified Chinese M-11s) as potential delivery vehicles for nuclear weapons. Ghauri missiles (1350 and 2300km), which reportedly are based on the North Korean No-Dong and Taepo-Dong-1, are capable of reaching New Delhi with large payloads.

It is believed that Because of its fears of being overrun by larger Indian forces, Pakistan has rejected the doctrine of no-first-use. In May 2002, Pakistan’s ambassador to the UN, Munir Akram, stated that “We have not said we will use nuclear weapons. We have not said we will not use nuclear weapons. We possess nuclear weapons. So does India ...We will not neutralize the deterrence by any doctrine of no first use

On June 4, 2002, President Musharraf went a step further then his UN ambassador sna stated that: “The possession of nuclear weapons by any state obviously implies they will be used under some circumstances. In recent years, Pakistan apparently has taken steps toward refining command and control of nuclear weapons. In April 1999, General Musharraf announced that the Joint Staff Headquarters would have a command and control arrangement and a secretariat, and a strategic force command would be established. With some experience and the passage of time a degree of sophistication will certainly be introduced in Pakistan’s nuclear doctrine of the first-use of nuclear weapons to provide the government more options in the use of nuclear weapons. This would also avoid unessential collateral damage to cities and other population centres in both countries. The object would be to employ nuclear weapons if attacked yet cause the least civilian casualties and damage to infrastructure.

Refferences

Escalation Control in South Asia,’ in Escalation Control and Nuclear Option in South Asia, eds M. Krepon, R. W. Jones, and Z. Haider, The Henry L. Stimson Center, Washington, D.C., 2004, p. 89.
Z. A. Bhutto, The Myth of Independence, Oxford University Press, Lahore, 1969, p. 153.
B. Chakma, ‘Road to Chagai: Pakistan’s Nuclear Programme, Its Sources and Motivations, Modern Asian Studies, vol. 36, no. 4, 2002, p. 887.
P. Hoodbhoy, ‘Nuclear Deterrence – An Article of Faith,’ The News (Rawalpindi), 17 March 1993.
‘NNCA Responsible for Safeguarding Nuclear Programme, Says Beg,’ The News, 2 June 1998.
S. H. Hasan, ‘Command and Control of Nuclear Weapons in Pakistan,’ Swords and Ploughshares, vol. 9, no. 1, 1994, p. 13.

Images: Title: Nicholson cartoon (www.nicholsoncartoons.com.au), and Reuters

1 Comment

Filed under Al-Qaeda, ASN Technology, Asymmetric Weapons, Ballistic missiles, Barak Obama, Brass Tacks Crisis, Bulletin of Atomic Scientists, Centre for Strategic and Budgetary Assessments (CSBA), China, China Defence, Chinease Defence, Chinese M-11, CIA, Cold War, Current Affairs, Dr A Q Khan, Drone Attacks Pakistan, F-16, Fifth Generation Combat Aircraft, Foreign Office Pakistan, General Pervez Mushuraf, Ghauri, Hatf2, India, India Special Weapons, Iran, ISI, Islamabad, Israel, Joint Staff Headquarters, Kashmir Conflict, Kuldip Nayar, Lockheed Martin, Lockheed martin F-16, Mirza Aslam Baig, Muslim World, Myth of Independence, National Nuclear Command Authority, NATO, New Delhi, NNCA Pakistan, No-Dong, Northa Korea, Nuclear Doctrine, Nuclear Security Summit 2010, Operation Brass Tacks, Pak-Af, Pakistan, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Chief of Army Staff, Pakistan Defence, Pakistan-Afghnistan Border, Pakistan-China, Pakistan-India Wars, President Musharraf, Quetta, Rao Qamar Suleman, S-300 Missiles, Safeguarding Nuclear Programme, shorter-range missiles, Sindh, South Asia, Taepo-Dong-1, The wilds of Waziristan, U.S Policy on Pakistan and Afghanistan, United Nations, US Department of Defense, Weapons of Mass Destruction, WMDs, Zulfikar Ali Bhutto

Electronic Warfare Operations – Part I

O divine art of subtlety and secrecy! Through you we learn to be invisible, through you inaudible; and hence hold the enemy’s fate in our hands. – Sun Tzu (The Art of War)

Wedgetail Flares Test

The advant of technology and understanding the control of electronmagnetic specturm (EM) has taken the description of warfare to another level. Modern military forces rely heavily on a variety of complex, high technology, electronic offensive and defensive capabilities. EW is a specialized tool that enhances many air and space functions at multiple levels of conflict. Modern weapons and support systems employ radio, RADAR, infrared, laser, optical and electro-optical technologies. Modern military systems, such as the E-8C joint surveillance, target attack radar system (JSTARS), rely on access to the electromagnetic spectrum to accomplish their missions. So what exactly Electronic Warfare is?

EW is any military action involving the use of the EM spectrum to include directed energy (DE) to control the EM spectrum or to attack an enemy. This is not limited to radio or radar frequencies but includes IR, visible, ultraviolet, and other less used portions of the EM spectrum. As giving air and ground forces a superiority – the application of EW was seen in Operation Desert Storm (Gulf War) – Where self-protection, standoff, and escort jamming, and antiradiation attacks, significantly contributed to the Air Force’s success. Within the information operations (IO) construct, EW is an element of information warfare; more specifically, it is an element of offensive and defensive counterinformation. Electronic Warfare comprises of three main components: Electronic Attack – Electronic Protection – and finally Electronic Warfare Support, all includes the integrated Information Operations (IO).

Key to Electronic Warfare success is the control of Electromagnetic Spectrum Control. This is usually achieved by protecting friendly systems and attacking adversary systems. In reference to above mentioned three components of EW – Electronic Attack, limits adversary use of the electronic spectrum; – Electronic Protection – protects the use of the electronic spectrum for friendly forces, and Electronic Warfare Support – enables the commander’s accurate estimate of the situation in the operational area. All three must be carefully integrated to be effective. Friendly forces must prepare to operate in a nonpermissive EM environment and understand EW’s potential to increase force effectiveness.

Electronic Warfare for Air Forces

Air Force electronic warfare strategy embodies the art and science of employing military assets to improve operations through control of the EM spectrum. An effective EW strategy requires an integrated mix of passive, disruptive, and destructive systems to protect friendly weapon systems, components, and communications-electronics systems from the enemy’s threat systems. During the Gulf War, EF-111 RAVENS were used successfully against Iraqi radars and communications facilities. Conflicts in Vietnam and the Middle East provided deadly reminders of the necessity for effective EW against advanced threats and of the intense effort required to counter these threats. Current technology has given rise to new enemy capabilities, which includes the use of microwave and millimeter wave technologies, lasers, electro-optics, digital signal processing, and programmable and adaptable modes of operation.

Douglas B-66 Destroyer during Vietnam War

During the Vietnam War EB-66 was used against terminal threat radars, surface to air missiles (SAM) and anti aircraft artillery (AAA) as well as used as stand-off jamming platforms. EB-66 modified version of U.S light bomber B-66 Destroyer (shown above). The RB-66C was a specialized electronic reconnaissance and ECM aircraft with an expanded crew of seven, including additional electronics warfare experts. A total of 36 of these aircraft were built with the additional crew members housed in what was the camera/bomb bay of other variants. RB-66C aircraft had distinctive wingtip pods and were used in the vicinity of Cuba during the Cuban Missile Crisis and later over Vietnam. In 1966, these were redesignated EB-66C. After the retirement of B-66, General Dynamics/Grumman EF-111A (shown below) Raven came to play the role. EF-111A Raven was an electronic warfare aircraft designed to replace the obsolete B-66 Destroyer in the United States Air Force. Its crews and maintainers often called it the “Spark-Vark”, a play on the F-111’s “Aardvark” then nickname.

An EF-111A Raven aircraft supplies radar jamming support while enroute to Eglin Air Force Base during the multi-service Exercise SOLID SHIELD '87.

EF-111A achieved initial operational capability, in 1983 EF-111s first saw combat use with the 20th Tactical Fighter Wing at RAF Upper Heyford during Operation El Dorado Canyon in 1986 (retaliatory attack on Libya), Operation Just Cause in 1989. The EF-111A served in Operation Desert Storm in 1991. On 17 January 1991, a USAF EF-111 crew: Captain James Denton and Captain Brent Brandon (“Brandini”) archived an unofficial kill against an Iraqi Dassault Mirage F1, which they managed to maneuver into the ground, making it the only member of the F-111/FB-111/EF-111 family to achieve an aerial victory over another aircraft.

Operational Concepts

The effective application of electronic warfare in support of mission objectives is critical to the ability to find, fix, track, target, engage, and assess the adversary, while denying that adversary the same ability. Planners, operators, acquisition specialists, and others involved with Air Force EW must understand the technological advances and proliferation of threat systems in order to enable friendly use of the EM spectrum. To control is to dominate the EM spectrum, directly or indirectly, so that friendly forces may exploit or attack the adversary and protect themselves from exploitation or attack. Electronic warfare has offensive and defensive aspects that work in a “movecountermove” fashion. To exploit is to use the electromagnetic spectrum to the advantage of friendly forces. Friendly forces can use detection, denial, disruption, deception, and destruction in varying degrees to impede the adversary’s decision loop. For instance, one may use electromagnetic deception to convey misleading information to an enemy or use an enemy’s electromagnetic emissions to locate and identify the enemy. To enhance is to use EW as a force multiplier. Careful integration of EW into air and space operations will detect, deny, disrupt, deceive, or destroy enemy forces in varying degrees to enhance overall mission effectiveness. Through proper control and exploitation of the EM spectrum, EW functions as a force multiplier and improves the likelihood of mission success.

Billion Dollar Market For Electronic Warfare

Forecast International’s “The Market for Electronic Warfare Systems” projects an estimated $28.4 billion will be spent over the next 10 years on the development and production of the major EW systems. Some 44,807 units of leading Electronic Countermeasures (ECM), Radar Warning Receivers (RWRs), Electronic Support Measures (ESM), and other EW systems that make up this analysis will be produced. The top-ranked EW producers cited in the analysis (out of a total of 22 companies considered) are Northrop Grumman, BAE Systems, Raytheon, ITT, and Lockheed Martin. While production of leading missile countermeasures systems has helped position some of these companies at the top of the ranking, others are leading the development of all-important, next-generation technology. It is important to add that today’s EW market leaders are firmly established because of their ability to provide much-needed EW systems for immediate deployment to the battlefield. To cite just one example, despite some defense budget tightening, the Pentagon is expected to spend over $560 million through FY13 on procurement of Northrop Grumman’s Large Aircraft Infrared Countermeasures (LAIRCM) system for various Air Force aircraft. The service has declared that its long-range desire is to equip a total of 444 aircraft with the system. The market for systems to defeat improvised explosive devices (IEDs) will also warrant close monitoring in the years ahead. With the recent surge of U.S. troops into Afghanistan, there has also been an increase in the occurrence of IED attacks. To counter these attacks, a competition is currently under way for development of a Counter Radio-Controlled Improvised Explosive Device (RCIED) Electronic Warfare (CREW) 3.3 system of systems. The U.S. Naval Sea Systems Command in October 2009 awarded firm-fixed-price contracts to two companies for CREW 3.3 System of Systems development. ITT Force Protection Systems was awarded $16 million, while Northrop Grumman Space and Mission Systems, Network Communication Systems was awarded $24.3 million. International ventures will also have a significant impact on the EW market through the new decade. The primary platform for ITT’s ALQ-214 Radio Frequency Countermeasures (RFCM) system is the U.S. Navy’s F/A-18E/F Super Hornet. Through its association with the jet fighter, a potentially growing export market for the ALQ-214 has begun to emerge. For example, the system will equip the F/A-18Fs purchased by Australia a stopgap measure until its F-35 fleet is ready for service.

I will continue the implementation and integration of three major components of Electronic Warfare in my next post. Please do check back

2 Comments

Filed under 20th Tactical Fighter Wing, Aardvark, AGm-113 Hellfire, ALQ-214 Radio Frequency Countermeasures, America's Army Rise of a Soldier, Anti Aircraft Artillery, Artificial Intelligence, Australian Military, B-66 Destroyer, Ballistic missiles, Boeing, Cold War, Cubian Missile Crisis, Dassault Mirage, Drone Technology, Drones, EB-66 Bomber, EF-111 Ravens, Electromagnetic Spectrum, Electronic Support measures, Fifth Generation Combat Aircraft, Flight Global, Flight Simulation, Global Aviation, Gulf War, I.E.D, Improvised Explosive Device, Information Operations, JSTARS, Large Aircraft Infrared Countermeasures, Lockheed Martin, Lockheed martin F-16, Maars, Microsoft, Milimeter Wave Radar, NASA, Operation Desert Storm, Predator, Radars, Radio Frequency, Raven, raytheon, RB-66C, Robotic Wars, Robots, RQ-4 Global Hawk, Russia, S-300 Missiles, Sikorsky, Soviet Union, surface-to-air missile, U.S Drone Technology, U.S Marines, Vietnam War

War Toys: Artificial Intelligence on Battlefield

Humanity at High-Tech

The following article was published in New York Times (27 November), written by John Markoff and can be accessed HERE As I highlighted the importance of unmanned vehicles in modern warefare, and use of electronic warefare equipment – this article highlighting the application of Artificial Intelligence (A.I) takes the discussion further by introducing the How Robots can win War for humans (if they can). Althogh it will not be fair to undermine the potential of human on war-ground, but a combination of drones in air, and robots on ground may serve the purpose well. However, one must not neglect the ethics involved, warefare rules and most important of all laws of Robotics.

While smart machines are already very much a part of modern warfare, the Army and its contractors are eager to add more. New robots — none of them particularly human-looking — are being designed to handle a broader range of tasks, from picking off snipers to serving as indefatigable night sentries. In a mock city here used by Army Rangers for urban combat training, a 15-inch robot with a video camera scuttles around a bomb factory on a spying mission. Overhead an almost silent drone aircraft with a four-foot wingspan transmits images of the buildings below. Onto the scene rolls a sinister-looking vehicle on tank treads, about the size of a riding lawn mower, equipped with a machine gun and a grenade launcher. Three backpack-clad technicians, standing out of the line of fire, operate the three robots with wireless video-game-style controllers. One swivels the video camera on the armed robot until it spots a sniper on a rooftop. The machine gun pirouettes, points and fires in two rapid bursts. Had the bullets been real, the target would have been destroyed.

“One of the great arguments for armed robots is they can fire second,” said Joseph W. Dyer, a former vice admiral and the chief operating officer of iRobot, which makes robots that clear explosives as well as the Roomba robot vacuum cleaner. When a robot looks around a battlefield, he said, the remote technician who is seeing through its eyes can take time to assess a scene without firing in haste at an innocent person. Yet the idea that robots on wheels or legs, with sensors and guns, might someday replace or supplement human soldiers is still a source of extreme controversy. Because robots can stage attacks with little immediate risk to the people who operate them, opponents say that robot warriors lower the barriers to warfare, potentially making nations more trigger-happy and leading to a new technological arms race. “Wars will be started very easily and with minimal costs” as automation increases, predicted Wendell Wallach, a scholar at the Yale Interdisciplinary Center for Bioethics and chairman of its technology and ethics study group.

Civilians will be at greater risk, people in Mr. Wallach’s camp argue, because of the challenges in distinguishing between fighters and innocent bystanders. That job is maddeningly difficult for human beings on the ground. It only becomes more difficult when a device is remotely operated. This problem has already arisen with Predator aircraft, which find their targets with the aid of soldiers on the ground but are operated from the United States. Because civilians in Iraq and Afghanistan have died as a result of collateral damage or mistaken identities, Predators have generated international opposition and prompted accusations of war crimes. But robot combatants are supported by a range of military strategists, officers and weapons designers — and even some human rights advocates.

“A lot of people fear artificial intelligence,” said John Arquilla, executive director of the Information Operations Center at the Naval Postgraduate School. “I will stand my artificial intelligence against your human any day of the week and tell you that my A.I. will pay more attention to the rules of engagement and create fewer ethical lapses than a human force.” Dr. Arquilla argues that weapons systems controlled by software will not act out of anger and malice and, in certain cases, can already make better decisions on the battlefield than humans.

“Some of us think that the right organizational structure for the future is one that skillfully blends humans and intelligent machines,” Dr. Arquilla said. “We think that that’s the key to the mastery of 21st-century military affairs.” Automation has proved vital in the wars America is fighting. In the air in Iraq and Afghanistan, unmanned aircraft with names like Predator, Reaper, Raven and Global Hawk have kept countless soldiers from flying sorties. Moreover, the military now routinely uses more than 6,000 tele-operated robots to search vehicles at checkpoints as well as to disarm one of the enemies’ most effective weapons: the I.E.D., or improvised explosive device.

Yet the shift to automated warfare may offer only a fleeting strategic advantage to the United States. Fifty-six nations are now developing robotic weapons, said Ron Arkin, a Georgia Institute of Technology roboticist and a government-financed researcher who has argued that it is possible to design “ethical” robots that conform to the laws of war and the military rules of escalation. But the ethical issues are far from simple. Last month in Germany, an international group including artificial intelligence researchers, arms control specialists, human rights advocates and government officials called for agreements to limit the development and use of tele-operated and autonomous weapons.

The group, known as the International Committee for Robot Arms Control, said warfare was accelerated by automated systems, undermining the capacity of human beings to make responsible decisions. For example, a gun that was designed to function without humans could shoot an attacker more quickly and without a soldier’s consideration of subtle factors on the battlefield. “The short-term benefits being derived from roboticizing aspects of warfare are likely to be far outweighed by the long-term consequences,” said Mr. Wallach, the Yale scholar, suggesting that wars would occur more readily and that a technological arms race would develop.

As the debate continues, so do the Army’s automation efforts. In 2001 Congress gave the Pentagon the goal of making one-third of the ground combat vehicles remotely operated by 2015. That seems unlikely, but there have been significant steps in that direction. For example, a wagonlike Lockheed Martin device that can carry more than 1,000 pounds of gear and automatically follow a platoon at up to 17 miles per hour is scheduled to be tested in Afghanistan early next year. For rougher terrain away from roads, engineers at Boston Dynamics are designing a walking robot to carry gear. Scheduled to be completed in 2012, it will carry 400 pounds as far as 20 miles, automatically following a soldier.

The four-legged modules have an extraordinary sense of balance, can climb steep grades and even move on icy surfaces. The robot’s “head” has an array of sensors that give it the odd appearance of a cross between a bug and a dog. Indeed, an earlier experimental version of the robot was known as Big Dog. This month the Army and the Australian military held a contest for teams designing mobile micro-robots — some no larger than model cars — that, operating in swarms, can map a potentially hostile area, accurately detecting a variety of threats. Separately, a computer scientist at the Naval Postgraduate School has proposed that the Defense Advanced Research Projects Agency finance a robotic submarine system that would intelligently control teams of dolphins to detect underwater mines and protect ships in harbors.

“If we run into a conflict with Iran, the likelihood of them trying to do something in the Strait of Hormuz is quite high,” said Raymond Buettner, deputy director of the Information Operations Center at the Naval Postgraduate School. “One land mine blowing up one ship and choking the world’s oil supply pays for the entire Navy marine mammal program and its robotics program for a long time.” Such programs represent a resurgence in the development of autonomous systems in the wake of costly failures and the cancellation of the Army’s most ambitious such program in 2009. That program was once estimated to cost more than $300 billion and expected to provide the Army with an array of manned and unmanned vehicles linked by a futuristic information network. Now, the shift toward developing smaller, lighter and less expensive systems is unmistakable. Supporters say it is a consequence of the effort to cause fewer civilian casualties. The Predator aircraft, for example, is being equipped with smaller, lighter weapons than the traditional 100-pound Hellfire missile, with a smaller killing radius.

Remotely controlled systems like the Predator aircraft and Maars move a step closer to concerns about the automation of warfare. What happens, ask skeptics, when humans are taken out of decision making on firing weapons? Despite the insistence of military officers that a human’s finger will always remain on the trigger, the speed of combat is quickly becoming too fast for human decision makers. “If the decisions are being made by a human being who has eyes on the target, whether he is sitting in a tank or miles away, the main safeguard is still there,” said Tom Malinowski, Washington director for Human Rights Watch, which tracks war crimes. “What happens when you automate the decision? Proponents are saying that their systems are win-win, but that doesn’t reassure me.”

Humanity at High-Tech

Robotics going at war doesn’t make sense to me, the whole idea of robots playing a meaningful role in a contemporary conflict is just sounds ridiculous – but apparently its not. A video based journey Humanity at High-Tech was compiled by Red Cross, who tend to believe that robots are playing an increasingly prominent role in modern conflict and throwing up all kinds of tricky ethical questions and dilemmas. The modern battlefield is changing beyond measure, from the Green Berets to Starship Troopers in the space of just 50 years. Who knows where we’re heading next? The whole idea of implementation and integration of Artificial Intelligence within battlefield will be in my next post.

Author: John Markoff

Leave a comment

Filed under Air Defence, Artificial Intelligence, Attack helicopters, Australian Military, Aviation, Call of Duty Modern Warefare, Current Affairs, Drone Attacks Pakistan, Drones, Engineering, Flight Global, Flight Simulation, Global Aviation, Global Times, I.E.D, Improvised Explosive Device, Laws of Robotics, Lockheed Martin, Maars, Microsoft, Milimeter Wave Radar, NATO, New York Times, Pakistan, Predator, Radars, Raven, raytheon, Robotic Wars, Robotic Weapons, Robots, U.S Drone Technology, U.S Marines, War on Terror