Category Archives: Pakistan Defence

A Chinese Stealth Challenge? Beginning of Stealth Arms Race

Several experts said the prototype's body appeared to borrow from the F-22 and other U.S. stealth aircraft, but they couldn't tell from the photographs how advanced it was in terms of avionics, composite materials or other key aspects of stealth technology.

I am little busy these days so please hold on a next post in series “Nuclear Power Dilemma” will be up soon. Meanwhile, read the following two pieces appeared in New Scientist and The Wall Street Journal, both making same excuses, and seems to be in highly nervous. China’s J-20, stealth aircraft, is it really stealth or just looked stealthy? One of my posts last year I referenced to one Chinese military source citing the revelation of stealth aircraft and aircraft carrier by China. Though the quoted time I put was around 10 years according to Chinese authorities, but this I don’t really think is applicable. From my opinion, China is still far away in stealth arms race, however, I really do hope that J-20 is in real a handy stealth aircraft and waiting anxiously for more on the issue. Anyway, have a read, I will soon update the blog with my recent post.

Has China’s new jet launched a stealth arms race?

New Scientist

China’s first flight test of its new high-tech J-20 stealth military jet on 11 January has drawn a lot of attention, particularly because it came during the visit of US defense secretary Robert Gates. What it means is another question, and the answers are complex. Military analysts had known China was developing a combat plane in the class of the US F-22 Raptor stealth fighter, but they had not expected it to make its first appearance in December, Aviation Week and Space Technology reported. Several high-speed ground tests, in which the craft’s front wheel rose off the ground, preceded the first flight.

China has released videos of the new jet on the ground, taking off, and landing at Chengdu. The New York Times quoted a Hong Kong analyst as saying the plane flew for 15 minutes over the airfield. With two distinctive angled tail fins like those of the F-22, it’s clearly intended to be stealthy. The Times also reports it is intended carry missiles and fly long distances when refueled in the air. The demonstration worries some analysts because it’s the first aircraft to challenge the performance of the F-22, the top of the US air force’s fleet. “We have become accustomed to a world where our air power is dominant,” Rand Corporation analyst Roger Cliff told Newsweek. “But that dominance is now in question.” Once the J-20 is deployed, in that scenario, US top guns would lose their high-performance stealth advantage and no longer rule the skies. o so fast, says Aviation Week. New, more powerful radars using active electronically scaled arrays can pick up fainter and fainter targets, and are fast catching up to stealth technology. “Anti-stealth will bring into question all stealth designs,” it says, hinting that the US may already have airborne radars able to spot stealth aircraft.

Moreover, perfecting stealth technology takes time. The US started its F-22 programme in the 1980s. To an experienced eye, the stealthy look of the Chinese jet “is just sort of cobbled together,” Teal group analyst Richard Aboulafia told The Wall Street Journal . He thinks China may be able to deploy the new aircraft in a decade, but by then the US should have better technology.

That sounds eerily familiar. We used to call it an arms race.

Actual Article

China’s J-20 Fighter: Stealthy or Just Stealthy-Looking?

The Wall Street Journal

When the First grainy images of China’s J-20 fighter appeared online, they seemed to confirm the fears of some China watchers: Beijing appeared to be on track to develop a “fifth generation” aircraft that featured the radar-eluding properties of advanced U.S. aircraft like the F-22 Raptor. But exactly how stealthy is the J-20? And does it mean that China can challenge the U.S. for control of the skies? In an interview with The Wall Street Journal, Richard Aboulafia, an aviation analyst with the Teal Group, an aerospace and defense consulting firm, said China is still years away from perfecting stealth aircraft. “It’s certainly stealthy-looking,” Mr. Aboulafia said. It looks like it’s got some of the faceting and some of the shaping that characterizes the front of the F-22, for example. “But then you look the details and you realize this thing is just sort of cobbled together,” he added. Take, for instance, the canards: forewings close to the nose of the aircraft that provide maneuverability. According to Mr. Aboulafia, “There’s no better way of guaranteeing a radar reflection and compromise of stealth” than adding canards to the aircraft. The same goes for the engine nozzles, which Mr. Aboulafia said were clearly not designed to be stealthy, as well the large overall size of the aircraft. Still, appearance of the J-20 prototype was a dramatic prelude to Chinese President Hu Jintao’s visit to Washington this week. But Mr. Aboulafia said that China still lacks the command-and-control networks, aerial refueling capabilities and other systems that allow the U.S. to project air power around the globe. What China does seem to be on track to produce, Mr. Aboulafia said, were aircraft that may eventually be on par with fighters like the F-22, which was designed by the U.S. in the 1980s. “It’s quite possible that in 10 years they have a functioning equivalent of the F-22, but by then, the West will have moved on to something far more impressive,” he said.

Actual Article

China’s New Stealth Race

And off-course don’t forget to hit a review of China’s New Stealth Race, first published after appearance of J-20 on TV on Wall Street Journal U.S. officials played down Chinese advances on the plane, which American intelligence agencies believe will likely be operational around 2018. “We are aware that the Chinese have recently been conducting taxi tests and there are photos of it,” said Pentagon spokesman Col. David Lapan. “We know they are working on a fifth-generation fighter but progress appears to be uneven.” China has made rapid progress in developing a capability to produce advanced weapons, also including unmanned aerial vehicles, after decades of importing and reverse engineering Russian arms. The photographs throw a fresh spotlight on the sensitive issue of China’s military modernization just as Washington and Beijing try to improve relations following a series of public disputes in 2010. The Chinese prototype looks like it has “the potential to be a competitor with the F-22 and to be decisively superior to the F-35,” said Mr. Fisher. The J-20 has two engines, like the F-22, and is about the same size, while the F-35 is smaller and has only one engine. China’s stealth-fighter program has implications also for Japan, which is considering buying F-35s, and for India, which last month firmed up a deal with Russia to jointly develop and manufacture a stealth fighter.

Wrap Up

The J-20 currently has two prototypes for test flight. One use the Russian AL-31 engines, and the other use the Chinese WS-10G engines, which are newer and provide more thrust. The Chinese counterpart of the X-37B, named “Shenlong”, did make the maiden flight in 2010. The program is very secretive and rarely known to the outside world. The entire J-20 project were created to defeat the F-22, and chances are, if a common analyst can think of a problem, real aerospace engineers would have thought of it too, and then found a solution. America had a head start, with post war German technology and brainpower transfer taking a large portion of the credit, however head start will only give you the lead for a while, its the smarter ones that’ll lead int he long run. As Professor Keith Hayward, Head of Research, Royal Aeronautical Society, notes in an upcoming analysis of the Chinese aerospace industry for the February issue of Aerospace International magazine: “China’s wider commercial relationships with developing world states are also providing useful leverage in forging deals.” China, then wants to move from just producing aircraft for its own domestic consumption, and a red-hot product like the J-20 could help it achieve this, far more than any slightly overweight A320 lookalike like the C919. Furthermore, with ‘Western-equivalent’ Chinese AAMs missiles to ‘bundle’ it with, any nation buying a J-20 would get an extremely capable weapon system – that will be ‘good enough’ for the majority of air forces and cheap enough to buy in siginficant numbers. Engines, too, are as of the moment an unknown. Previously reliant on Russia for engines any, development in powerplants would signify a greater leap forward than the pure airframe and some analysts have suggested a new Chinese engine, the Shenyang WS 15 may power the J-20. However, notably the J-20 also uses a divertless supersonic intake (DSI) and is only the third aircraft to sport this feature after the F-35 and Pakistan Air Force’s JF-17, suggesting that Chinese experience with this technology has been successful so far and it has brought benefits. armament China is now making great strides in guided weapons of all types. Its AMRAAM-type AAM, the PL-12, reportedly outranges the original US weapon. A short-range dogfight missile, the PL-ASR has been described as ‘very scary’ by one western missile expert. Meanwhile China is reported to be working on a long-range ramjet powered missile – the PL-13 comparable to Europe’s MBDA Meteor which, if introduced today, would outrange anything in the (white) US inventory. In short, Western missile experts in private are noticeably rattled by this progress and maintain that any gap in quality between western and Chinese air-to-air weaponry is fast closing.I sincerely hope best for J-20, by no means argue with Chinese abilities to compete in stealth race.

Advertisements

Leave a comment

Filed under Air Defence, Barak Obama, Chengdu Aircraft, China, China Air Force, China Defence, Chinease Defence, Chinese Defence, F-22, F-22 raptor, F-35, Fifth Generation Combat Aircraft, J-20, PAk-FA, Pakistan Aeronautical Complex, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Defence, Rao Qamar Suleman, Stealth China, Wall Street

Agile Beams: Active Electronically Scanned Array Radars

AESAs aim their "beam" by broadcasting radio energy that interfere constructively at certain angles in front of the antenna. They improve on the older passive electronically scanned radars by spreading their broadcasts out across a band of frequencies, which makes it very difficult to detect over background noise. AESAs allow ships and aircraft to broadcast powerful radar signals while still remaining stealthy. Above is AESA on F22

The AN/APG-77 is a multifunction radar installed on the F-22 Raptor fighter aircraft. It is one of the most advanced radar today. More than 100 APG-77 AESA radars have been produced to date by Northrop Grumman, and much of the technology developed for the APG-77 is being used in the APG-81 radar for the F-35 Lightning II. The APG-77v1 was installed on F-22 Raptors from Lot 5 and on. This provided full air-to-ground functionality (high-resolution synthetic aperture radar mapping, ground moving target indication and track (GMTI/GMTT), automatic cueing and recognition, combat identification, and many other advanced features).

APG-77 is based on Active Electronically Steered Array (AESA) technology. The AESA includes multiple individual active transmit/receive (T/R) elements within the antenna. Depending upon the precise implementation, there may be anywhere between 1000 and 2000 of these individual T/R elements which, together with the RF feed, comprise the AESA antenna. As for the passive ESA, these elements are highly redundant and the radar can continue to operate with a sizeable percentage of the devices inoperative. This graceful redundancy feature means that the radar antenna is extremely reliable; it has been claimed that an AESA antenna will outlast the host aircraft. The fact that the transmitter elements reside in the antenna itself means there is no standalone transmitter – there is an exciter but that is all. As before, there is clearly a need for a receiver as well as an RDP and signal processor. The active T/R elements are controlled in the same way as the phase shifters on the passive ESA, either by using a beam-steering computer (BSC) or by embedding the beam-steering function in the RDP.

The ability to control many individual T/R modules by software means confers the AESA with immense flexibility of which only a few examples are: First each radiating element may be controlled in terms of amplitude and phase, and this provides superior beam-shaping capabilities for advanced radar modes such as terrainfollowing, synthetic aperture radar (SAR) and inverse SAR (ISAR) modes. Secondly Multiple independently steered beams may be configured using partitioned parts of the multidevice array. Thirdly If suitable care is taken in the design of the T/R module, independent steerable beams operating on different frequencies may be accommodated and Finally The signal losses experienced by the individual T/R cell approach used in the AESA also bring considerable advantages in noise reduction, and this is reflected in improved radar performance.

The AN/APG-80 system is described as "agile beam", and can perform air-to-air, search-and-track, air-to-ground targeting and aircraft terrain-following functions simultaneously and for multiple targets. As a SAR system utilizing NG's fourth-generation transmitter/receiver technologies, it has a higher reliability and twice the range of older, mechanically-scanned AN/APG-68 radar systems. Above is F-16 APG-80 Radar

One dramatic improvement is the noise figure; it is especially significant achieving such an improvement so early in the RF front end. This results in a remarkable range improvement for the AESA radar. A number of US fighter aircraft are being fitted or retrofitted with AESA radars, these are F-22 Raptor, F-18E/F (Upgrade version) fitted with AN/APG-79, F-16E/F (Block 60) fitted with AN/APG-80, F-15 and F-35 fitted with AN/APG-81. Taking for example F-16, it is interesting to see a dofference in performance between two batches (Block 50) and Block 60. Former had target detection radar range of 50 miles, which was improved to 70 miles with AESA radards (for reference F-22 covers 125miles range). The F-16 Block 60 (now the F-16E/F) shows an improvement from 45 to 70 nm (þ55%), while the F-15C range has increased from 60 to 90 nm (þ50%). Apart from the obvious improvement in range, it has been stated by a highly authentic source that AESA radar confers 10–30 times more in radar operational capability compared with a conventional radar (Report of the Defense Science Board Task Force, 2001).

The F-16E (single seat) and F-16F (two seat) are newer F-16 variants. The Block 60 version is based on the F-16C/D Block 50/52 and has been developed especially for the United Arab Emirates (UAE). It features improved AN/APG-80 Active Electronically Scanned Array (AESA) radar, avionics, conformal fuel tanks (CFTs), and the more powerful GE F110-132 engine. However the batch bought by Pakistan Air Force (F-16C/D) is equipped with AN/APG-68 (V)9 Radar Systems. Only the Block 60 aircraft, destined for the UAE, are to be equipped with a more advanced version – the Active Electronically Scanned Array (AESA) radar. The APG-68(V)9 offers 30 percent increase in detection range, improved search-while-track mode (four vs. two tracked targets) and larger search volume and improved track while scan performance. Its single target track performance has also been improved. On air/ground missions, the new radar becomes an effective sensor, utilizing its high-resolution synthetic aperture radar mode, which allows the pilot to locate and recognize tactical ground targets from considerable distances. Although previous radars had some Synthetic Aperture Radar (SAR) capabilities, the new version generates imagery-class (2 feet resolution) high resolutions pictures, comparable to pictures delivered by the most modern commercial satellites. These pictures can be acquired from very long range, at all weather conditions and provide an effective, real-time source for the targeting of long range, precision guided weapons. The radar also has increased detection range in sea surveillance mode, and enhanced ground moving target identification and mappinc capability. The radar features an inertial measurement unit that improves dynamic tracking performance and provides an auto-boresight capability, which increases accuracy.

2 Comments

Filed under AESA, APG-68, APG-80, Electronic Warfare, F-16, F-22, F-22 raptor, F-35, F/A-18, Fifth Generation Combat Aircraft, Flight Simulation, FLIR Systems, Foreign Office Pakistan, Lockheed martin F-16, Pakistan, Pakistan Aeronautical Complex, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Chief of Army Staff, Pakistan Defence, Pakistan-Afghnistan Border, RADAR, Radars, Radio Frequency, Saudi Arabia, Saudi Aviation, Sixth Generation Fighter Jet, US Department of Defense, US Navy

Air Power Pakistan: Implementations of Network Centric Warfare

'I am well aware of Air developments in other countries and my Government is determined that the Royal Pakistan Air Force will not lag behind. M A Jinnah

This post is an effort to understand and articulate the power of information superiority in warfare from a Joint perspective. War is a product of its age. The tools and tactics of how we fight have always evolved along with technology. Often in the past, military organizations pioneered both the development of technology and its application. Such is not the case today. The advant of Information Technology, has changed the meaning of war. As I highlighted in some of my previous posts War today is no more same as war few decades back – here I am pointing to Electronic Warfare, Network Centric Warfare, Use of Artificial Intelligence in Battlefield, Unmanned Vehicles and so on. This post however, is to see how Network Centric Warfare (NCW) embodies the characteristics of the Information Age; and to identify the challenges in transforming this concept into a real operational capability. For more on Electronic Warfare and Artificial Intelligence see my following posts: Intellegent Warfare Electronic Support Measures and War Toys – Artificial Intelligence on Battlefield. I intend to show that How Well did Pakistan Air Force understands the Network Centric Warfare.

Society has changed. The underlying economics and technologies have changed. So we should be surprised if Global forces’ did not. For nearly 200 years, the tools and tactics of how we fight have evolved with military technologies. Now, fundamental changes are affecting the very character of war. Who can make war is changing as a result of weapons proliferation and the fact that the tools of war increasingly are marketplace commodities. By extension, these affect the where, the when, and the how of war. In 1998, U.S Navy published a report on the origin of Network Centric Warfare and how U.S Society and Business has adapted it. This report pointed out the transition from “platform-centric warfare” to “network-centric warfare”: It further goes on and suggested:

Network-centric warfare and all of its associated revolutions in military affairs grow out of and draw their power from the fundamental changes in American society. These changes have been dominated by the co-evolution of economics, information technology, and business processes and organizations, and they are linked by three themes:

– The shift in focus from the platform to the network
– The shift from viewing actors as independent to viewing them as part of a continuously adapting ecosystem
– The importance of making strategic choices to adapt or even survive in such changing ecosystems

These changes in the dimensions of time and space are increasing the pace of events, or operating tempo, in many different environments. Responsiveness and agility are fast becoming the critical attributes for organizations hoping to survive and prosper in the Information Age. With little observation of what is going around in Business, and civil sectors I don’r think that it is wrong to say that – the changes these affecting these organisations due to the advant of Information Technology are driven by changes in the environments they operate and capabilities they have in their disposal. Similarly, for military battle space has changed and become a case of Information Superiority. So what exactly is NCW and Why networking?

Network Centric Warfare

From a broad perspective the introduction of networking techniques into warfighting systems is the military equivalent of the digitisation and networking drive we observed in Western economies between 1985 and 1995. Military networking, especially between platforms, is far more challenging than industry networking due to the heavy reliance on wireless communications, high demand for security, and the need for resistance to hostile jamming. The demanding environmental requirements for military networking hardware are an issue in their own right.A high speed network permits error free transmission in a fraction of the time required for voice transmission, and permits transfer of a wide range of data formats. In a more technical sense, networking improves operational tempo (optempo) by accelerating the Observation-Orientation phases of Boyd’s Observation-Orientation-Decision-Action (OODA) loop. Identified during the 1970s by US Air Force strategist John Boyd, the OODA is an abstraction which describes the sequence of events whihc must take place in any military engagement. The opponnent must be observed to gather information, the attacker must orient himself to the situation or context, then decide and act accordingly.

Observation-Orientation-Decision are all about gathering information, distributing information, analysing information, understanding information and deciding how to act upon this information. The faster we can gather, distribute, analyse, understand information, the faster we can decide, and arguably the better we can decide how and when to act in combat. Networking is a mechanism via which the Observation-Orientation phases of the loop can be accelerated, and the Decision phase facilitated. Well implemented networking can contribute to improved effectiveness in other ways. One such technique is ‘self synchronisation’ which permits ‘directive control’. Rather than micromanage a warfighting asset with close control via a command link tether, warfighters are given significant autonomy, defined objectives, and allowed to take the initiative in how they meet these objectives.

NCW focuses on the combat power that can be generated from the effective linking or networking of the warfighting enterprise. It is characterized by the ability of geographically dispersed forces (consisting of entities) to create a high level of shared battlespace awareness that can be exploited via self-synchronization. Furthermore, NCW is transparent to mission, force size, and geography. The mathematical bottom line in NCW is a very simple one: networking can permit a significant improvement in operational tempo, where a shortage of targeting information is the bottleneck to achieving a high operational tempo, but networking itself has very little impact on the absolute ability of a force to deliver weapons against targets, that being constrained by the capabilities and number of combat platforms in use.

It can be argued that networking produce its greatest gains in combat effect during battlefied strike and close air support operations, especially against highly mobile and fleeting ground targets. No less interesting are the effects observed in demand for specific types of assets to support networked interdiction and strike operations. Air Power Australia – An Australian Defence THink tank, cites that: Bigger is better in the networked strike game, so much so that a recent discussion piece by US analyst Price Bingham in the ISR Journal predicted the demise of the classical battlefield interdiction tasked fighter-bomber, in favour of larger bombers and UCAVs. This is a direct challenge to the basic rationale for the Joint Strike Fighter family of battlefield interdiction and close air support fighters, and the longer term use of legacy designs like the F-16 and F/A-18 variants. According to those who are in favour of NCW, A key issue for all networking is the Intelligence-Surveillance-Reconnaissance capability supporting it. Networks like all computing systems obey the Garbage-In Garbage-Out rule – without accurate high quality ISR systems feeding the network, it is little more than high speed digital plumbing between platforms, with nothing useful to carry. However, one can equally finds the disadvantage of this In-Out system (i will come on this issue later).

U.S aside, Russia has capitalised on this by aggressively marketing ISR platforms like the A-50 AWACS, digital datalinking products – the Soviets were deeply enamoured of digital air defence networks – and counter ISR systems. The latter include long range AAMs like the R-172, R-37 and Kh-31 variants, as well as airborne and land mobile high power jamming equipment, and very long range SAMs like the S-400 and Imperator series. As the ranges of our sensors and weapons increase and as our ability to move information rapidly improves, we are no longer geographically constrained. Hence, in order to generate a concentrated effect, it is no longer necessary to concentrate forces.

The prerequisite for an NCW capability is the digitisation of combat platforms. A combat aircraft with a digital weapon system can be seamlessly integrated in an NCW environment by providing digital wireless connections to other platforms. Without the digital weapon system, and its internal computers, NCW is not implementable.

The term Network Centric Warfare also carries some baggage. By mistake, some have focused on communication networks, not on warfare or operations where the focus should rightly be.
Networks are merely a means to an end; they convey “stuff” from one place to another and they are the purview of technologists. NCW does not focus on network-centric computing and communications, but
rather focuses on information flows, the nature and characteristics of battlespace entities, and how they need to interact. NCW is all about deriving combat power from distributed interacting entities with significantly improved access to information.

There has been little effort to capitalise on the new technology of ad hoc network protocols, designed for self organising networks of mobile platforms, although the JTRS WNW effort looks promising. The DARPA GLOMO program in the late 1980s saw considerable seed money invested, but did not yield any publicised dramatic breakthroughs. Ad hoc networking remains a yet to be fully explored frontier in the networking domain, one which is apt to provide a decisive technology breakthrough for NCW.

Technological Challegnes

Security and Robustness of transmission, Transmission capacity, Message and signal routing, and Signal format and communications protocol compatibility are some issues concerning NCW. It is essential that dissimilar platforms and systems can communicate in an NCW environment. This problem extends not only to the use of disparate signal modulations and digital protocols, but to the use of partially incompatible implementations of what is ostensibly the same signal modulation or communications protocol.

Global Defence Industry

Russia

Most regional nations are now operating, deploying or shopping for Airborne Early Warning & Control (AEW&C) aircraft. Russia is actively marketing digital datalinks, like the TKS-2 and older APD-518, and marketing counter-ISR weapons like the Novator R-172 (KS-172) or Kh-31 series missiles. Russia is also marketing high power jamming equipment, especially pods using Digital RF Memory (DRFM) technology, and there is a good prospect of a Growler-ski based on the Su-32 materialising before the end of the decade.

United States of America

In practical terms, by 2010-2015 regional opponents without AEW&C, long range counter-ISR missiles and jamming pods are likely to be the obliging exception to the rule. US thinking is not surprisingly centred in using F/A-22As to sanitise airspace permitting unhindered use of ISR platforms and networks, and the program to replace the lost capabilities of the EF-111A Raven with the B-52J or EB-52, equipped with high power stand-off jamming equipment to disrupt opposing networks and ISR sensors.

Pakistan Airforce and Network Centric Warfare

NCW must be properly understood before it can be used as a basis for strategic planning decisions. Clearly this was not been the case in many key areas of the Pakistan’s MoD. The situation however changes in 2010.

The Saab 2000 Erieye AEW&C, developed for the Pakistan Air Force, on display

JF-17 operation, new batch of F-16, inclusion of Saab 2000 erieye, and ZDK 03 AWACS aircarfts are all part of step taken by Pakistan Air Force, to meet the NCW and Electronic Warfare requirements, which indeed are less than none. SAAB signed an 8 billion kronor provisional contract to supply 6 Saab 2000 erieye to Pakistan, which was finalized in June 2006 at four aircraft, one of which has been delivered to date. This aircraft (shown above) incorporates the Erieye Radar System, and Airborne Early Warning and Control System (AEWCS) and is based on based on the Active Electronically Scanned Array (AESA) radar.

The Erieye AEW&C mission system radar is an active, phased-array, pulse-Doppler sensor that can feed an onboard operator architecture or downlink data (via an associated datalink subsystem) to a ground-based air defence network. The system employs a large aperture, dual-sided antenna array housed in a dorsal ‘plank’ fairing. The antenna is fixed, and the beam is electronically scanned, which provides for improved detection and significantly enhanced tracking performance compared with radar-dome antenna systems. Erieye detects and tracks air and sea targets out to the horizon, and sometimes beyond this due to anomalous propagation — instrumented range has been measured at 450 km. Typical detection range against fighter-sized targets is approximately 425 km, in a 150° broadside sector, both sides of the aircraft. Outside these sectors, performance is reduced in forward and aft directions. Other system features include: Adaptive waveform generation (including digital, phase-coded pulse compression); Signal processing and target tracking; Track While Scan (TWS); Low sidelobe values (throughout the system’s angular coverage); Low- and medium-pulse repetition frequency operating modes; Frequency agility; Air-to-air and sea surveillance modes; and Target radar cross-section display.

Pakistan Air Force JF-17

JF-17 comprises of two VHF/UHF radios, one of them having capacity for data linking. The data link can be used to exchange data with ground control centres, AWACS/AEW aircraft and other combat aircraft also equipped with compatible data links. The ability to data link with other “nodes” such as aircraft and ground stations allows JF-17 to become part of a network, improving the situational awareness of the pilot as well as other entities in the network.

The JF-17 has a defensive aids system (DAS) made up of various integrated sub-systems. A radar warning receiver (RWR) gives data such as direction and proximity of enemy radars to the pilot and electronic warfare (EW) suite, housed in a fairing at the tip of the tail fin for greater coverage, that interferes with enemy radars. The EW suite is also linked to a missile approach warning (MAW) system to help it defend against radar-guided missiles. The MAW system uses several optical sensors mounted on the airframe (two of which can be seen at the base of the vertical stabiliser) that detect the rocket motors of missiles and gives 360 degree coverage. The DAS systems will also be enhanced by integration of a self-protection radar jamming pod which will be carried externally on one of the aircraft’s hardpoints. Electronic support measures and defensive aids are used extensively to gather information about threats or possible threats. DAS Systems – They can be used to launch devices (in some cases automatically) to counter direct threats against the aircraft. They are also used to determine the state of a threat and identify it. To my knowledge it uses KJ8602A Airborne Radar Warning Receiver. The KJ8602A airborne radar warning receiver (RWR) is designed to detect incoming radar signals; identify and characterise these signals to a specific threat; and alert the aircrew through the cockpit video/audio warning. The KJ8602A features several external antennae mounted on the vertical fin tip, both wingtips, and underneath the forward fuselage. Once the hostile radar signal is detected, the KJ8602A analyses those received signals and identify the signal sources according to the stored emitter identification data (EID), and alerts the pilot. The system can also automatically trigger the chaff/flare dispenser or other onboard ECM systems to counter the incoming threats.

The JF-17s in service with the PAF are fitted with an Italian Grifo S-7 multi-track, multi-mode, pulse Doppler radar radar. The radar has 25 working modes and a non-break-down time of 200 hours, and is capable of “look-down, shoot-down”, as well as for ground strike abilities. Alternatively, the aircraft can be fitted with the Thales RC400, GEC Marconi Blue Hawk, Russian Phazotron Zemchug/Kopyo, and Chinese indigenous KLJ-7 developed by Nanjing Research Institute of Electronics Technology (NRIET). The first 42 production aircraft currently being delivered to the Pakistan Air Force are equipped with the NRIET KLJ-7 radar. In December 2010, Pakistan Air Force’s Air Chief Marshal Rao Qamar Suleman announced that KLJ-7 radar will be built at Pakistan Aeronautical Complex (PAC), in Kamra, north of Islamabad

The KLJ-7 uses a mechanically-steered slotted array antenna and bears similarities with the various Russian radars imported in the 1990s. Russian radar design houses Phazotron and NIIP had worked closely in the past with the Chinese radar design bureaus and provided technical assistance as well as operational models of Russian-made radar sets that were used as benchmarks in the process of these Chinese firms developing their own design. Up to 20 units of the Phazotron Zhemchoug ('Pearl) radar were imported in the mid-1990s for evaluation along with 2 units of Phazotron (NIIR) RP-35, which is the upgraded version of the Zhemchoug

The KLJ-7 has multiple modes, both beyond-visual-range (BVR) and close-in air-to-air modes, ground surveillance modes and a robust anti-jamming capability. The radar can reportedly manage up to 40 targets, monitor up to 10 of them in track-while-scan (TWS) mode and simultaneously fire on two BVR targets. The detection range for targets with a radar cross-section of 5 square meters is stated to be ≥105 km (≥85 km in look-down mode). Surface sea targets can be detected at up to 135 km. It has been reported that KLJ-7 also has modes to support a range of NATO weaponry, including the Raytheon AIM-9 Sidewinder short-range and AIM-7 Sparrow medium-range air-to-air missiles. The RADAR operates at Ground Moving Target Indication/Ground Moving Target Track (GMTI/GMTT), Range While Search (RWS), Sea Single Target Track (SSTT), Synthetic Aperture Radar (SAR), Doppler Beam Sharpening (DBS), Situational Awareness Mode (SAM), Velocity Search (VS) and many other. Pakistan’s move to develop these RADARS at home, and extending their capibility to next level will surely provide them an advantage over its compitators.

Four Chinese ZDK-03 AEW&C aircraft have also been ordered. Which are PAF-specific version of the KJ-200, incorporating a Chinese AESA radar similar to the Erieye mounted on the Shaanxi Y-8F600 transport aircraft. Currently PAF’s No.24 Blinders squadron operates three Dassault Falcon 20 aircraft in the ELINT (Electronic signals intelligence) and ECM (Electronic countermeasures) roles. Former refers to intelligence-gathering by use of electronic sensors. Its primary focus lies on non-communications signals intelligence. The data gathered are typically pertinent to the electronics of an opponent’s defense network, especially the electronic parts such as radars, surface-to-air missile systems, aircraft, etc. ELINT can be used to detect ships and aircraft by their radar and other electromagnetic radiation; commanders have to make choices between not using radar (EMCON), intermittently using it, or using it and expecting to avoid defenses. ELINT can be collected from ground stations near the opponent’s territory, ships off their coast, aircraft near or in their airspace, or by satellite. However, ECM, are a subsection of electronic warfare which includes any sort of electrical or electronic device designed to trick or deceive radar, sonar or other detection systems, like infrared (IR) or lasers. It may be used both offensively and defensively to deny targeting information to an enemy. The system may make many separate targets appear to the enemy, or make the real target appear to disappear or move about randomly. It is used effectively to protect aircraft from guided missiles (refer to my precvious post for ECM and ESM).

The Shaanxi Y-8 or Yunshuji-8 aircraft is a medium size medium range transport aircraft produced by Shaanxi Aircraft Company in China, based on the Soviet Antonov An-12.

KJ-200, incorporates an Active Electronically Scanned Array (AESA) Radar (aka active phased array radar). This radar possess many advantages over conventional passive scanned radar, one is that the different modules can operate on different frequencies. Additionally, the solid-state transmitters are able to broadcast effectively at a much wider range of frequencies, giving AESAs the ability to change their operating frequency with every pulse sent out. AESAs can also produce beams that consist of many different frequencies at once, using post-processing of the combined signal from a number of transmitter-receiver modules (TRMs) to re-create a display as if there was a single powerful beam being sent. AESAs are so much more difficult to detect, and so much more useful in receiving signals from the targets, that they can broadcast continually and still have a very low chance of being detected. This allows the radar system to generate far more data than if it is being used only periodically, greatly improving overall system effectiveness. Similar type is featured on F-22 and F/A 18 Super Hornet.

Concluding Remarks

Critics of NCW argue that system is prone to Chaos, and thus link the system with Chaos Theory – to some extent they are right, but as I have mentioned earlier, system integration in NCW is no easy, and prone to may fatel error if neglected. As far as PAF analysis is concerned, I have treid my best to include what I could and keep it simple. However, I will include the advances from Navy side some other time. Also, if reader is interested to explore more about the Network Centric Warfare, please refer to US DoD Report to Congress and Thought Systems and Network Centric Warfare

Leave a comment

Filed under Chaos Theory, Dopplar Radar, Electronic Counter Measures, EMCON, Erieye radar, F-22, Foreign Office Pakistan, GMTI/GMTT, KJ8602A, KLJ-7, Network Centric Warfare, OODA, Pak-Af, Pakistan, Pakistan Aeronautical Complex, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Chief of Army Staff, Pakistan Defence, Pakistan Navy, Pakistan-China, Pakistan-India Wars, RADAR, Rao Qamar Suleman, RC400, Russia, S-300 Missiles, S-400 missiles, Saab 2000 Erieye, Saudi Arabia, Saudi Aviation, U.S DoD, ZDK 03

Nuclear Doctrine of Pakistan: Dilemmas of Small Nuclear Force in the Second Atomic Age

Dilemmas of Small Nuclear Forces, 4-series of articles highlighting the Nuclear Doctrine of Pakistan, its command and control system. The series contain 3 articles: First article (below) explore the Rise of Nuclear Deterrence, Second: is subjected to Post-1998 Doctrinal Contemplation, Third: Confidence-Building Measures between India and Pakistan, and Fourth: concludes with the military objectives of Pakistan’s nuclear weapons and highlights from the Nuclear Security Summit 2010.

Pakistan regards its nuclear weapons as its most precious strategic asset which constitutes the ultimate guarantor of nation's existence. This is encapsulated in an article by Gen Mirza Aslam Beg titled 'Pakistan's Nuclear Imperatives' wherein he wrote "Oxygen is basic to life, and one does not debate its desirability, nuclear deterrence has assumed that life-saving property for Pakistan.

A doctrine could be defined as a set of principles formulated and applied for a specific purpose, working towards a desired goal or aim. A nuclear doctrine would consequently consist of a set of principles, and instructions for the employment or non-employment of nuclear weapons and other associated systems. Until 2005, India and Pakistan were the only states outside the Nuclear Nonproliferation Treaty to declare, openly, their nuclear weapons capability. In 1998, they tested nuclear weapons and since then, deployed ballistic missiles, enunciated nuclear doctrine, and made organizational changes to their nuclear establishments. In 2002, they teetered on the brink of war in Kashmir. The second half of this article dilate somewhat the factors that have conceived the concept which has formulated the nuclear doctrine of Pakistan. I certainly believe that in South Asia a balance of power cannot be maintained by conventional means alone. This article endeavours to construct a proto Pakistani nuclear use doctrine from its declaratory and operational postures, in particular from the statements and interviews of the Pakistani political and military leaders and government officials. Initially reflecting upon its pre-1998 nuclear strategy, which has got critical implications for the post-tests doctrinal contemplation.

Pakistan is believed to have been developing a nuclear capability since the early 1970s. In May 1998, Pakistan responded to India’s nuclear tests by testing a series of nuclear weapons and declaring itself a nuclear weapon power. Pakistan, like India, has supported comprehensive disarmament proposals at the United Nations and Conference on Disarmament, but did not join the CTBT for similar reasons as India. Pakistan has proposed a number of bilateral or regional initiatives which India has not supported. These include a Nuclear Weapons Free Zone in South Asia and joining the NPT. India opposes these on the grounds that they do not address the nuclear threat India faces from China and the other NWS. Pakistan and India have concluded a number of bilateral confidence building measures including a hot-line agreement and an agreement not to attack each other’s nuclear power facilities.

While all these (including Pakistan, India, North Korea and Israel) small nuclear powers are in the process of developing their nuclear force structures, two key questions that have arisen are: How, when and for what purposes do they plan to use nuclear weapons? And what command. The word “small” here distinguishes these nation and their doctrines from U.S.A, UK, France and Russia. Prime focus is to understand the emerging structure of Pakistan’s Nuclear Doctrine.

President Barack Obama greets Pakistan's Prime Minister Yusuf Raza Gilani at the Nuclear Security Summit in Washington April 12, 2010. REUTERS/Kevin Lamarque

In The Myth of Independence, Zulfikar Ali Bhutto (president of Pakistan in December 1971) argued that modern wars should be conceived of as total wars, and in this type of war Pakistan needed nuclear weapons. Bhutto’s thinking, as will be analysed below, had far-reaching impacts on Pakistan’s nuclear strategy, and on its doctrinal contemplation. Soon after assuming Presidency of Pakistan on 20th December 1971 he took the decision to initiate a nuclear weapons project. This decision was taken against the backdrop of three specific factors: firstly, it was a direct consequence of the 1971 war where Pakistan’s conventional inferiority was demonstrated for the third time, at the cost of almost half of its territory; secondly, Pakistani leaders in general (particularly Bhutto) were convinced that India was determined to build a nuclear arsenal; and thirdly, Bhutto believed that only nuclear weapons could guarantee the national survival of Pakistan against the Indian threat.8 It is evident that Pakistan’s nuclear weapons project was initiated to deter Indian nuclear as well as conventional aggression, an aim that endured in the subsequent years and today constitutes one of the central pillars of Pakistan’s nuclear use doctrine.

Brass Tacks Crisis – First Nuclear Deterrence Posture [1986-1987]

After India and Pakistan held nuclear tests in 1998, experts have debated whether their nuclear weapons contribute to stability in South Asia. Experts who argue that the nuclear standoff promotes stability have pointed to the U.S.-Soviet Union Cold War as an example of how deterrence ensures military restraint.

First employment of Pakistan’s nuclear deterrent stratagy was during the 1986-1987 brasstacks crisis between India and Pakistan. With the crisis peaking in January 1987, India had deployed 400,000 troops, or about half the Indian army, within 100 miles of Pakistan. It began when India had launched the largest ever military exercises in the subcontinent, called Operation Brass Tacks. The exercise would take place not in India’s far north, where the always tense state of Kashmir is located, but in the desert area of Rajastan, a few hundred miles from the Pakistani border, which, a the Pakistani government was sure to note, was and ideal location from which to launch a cross border operation into the Pakistani state of Sindh that could cut Pakistan in half. The exercises included bulk of Indian Army, and was comprised of the nine infantry, three mechanised, three armoured and one air assault divisions, and three armoured brigades under four corps HQ with all theparaphernalia for a real war, concentrated on Pakistan’s sensitive border areas. This was bigger than any NATO exercise – and the biggest since World War II. Also planned was an ambitious amphibious operation by the Indian Navy with one division, in Korangi area of Karachi. Another feature of the exercise was a decision by General Sundarji to integrate Indias special weapons, including tactical nuclear into day-to day field maneuvers of the troops.

Pakistani military analysts saw Brass Tacks as a threatening exhibition of an overwhelming conventional force. Some even suspected that India wanted to launch swift surgical strikes at the Sikh terrorists’ training and planning sites inside Pakistan. Pakistan responded with maneuvers of its own that were located close to India’s state of Punjab. The crisis atmosphere was heightened when Pakistan’s premier nuclear scientist Abdul Qadir Khan revealed in a March 1987 interview that Pakistan had manufactured a nuclear bomb. Although Khan later retracted his statement, India stated that the disclosure was “forcing us to review our option.” Interview by Dr A.Q Khan’s interview to Indian journalist, Kuldip Nayar records:

what the CIA has been saying about our possessing the bomb is correct and so is the speculation of some foreign newspapers … They told us that Pakistan could never produce the bomb and they doubted my capabilities, but they now know we have done it … Nobody can undo Pakistan or take us for granted. We are there to stay and let it be clear that we shall use the 10 bomb if our existence is threatened.

Formal and impromptu talks between the leaders of the two countries finally resulted in a number of new CBMs between India and Pakistan. These were important and covered a number of areas. For example, the Agreement on the Prohibition of Attack against Nuclear Installations and Facilities was signed on December 31, 1988, in Islamabad by the two foreign secretaries and witnessed by the two prime ministers, Rajiv Gandhi and Benazir Bhutto, respectively. Earlier fears of impending attack on the facilities resulting in an all-out war fed the need for the agreement.

Kashmir – Second Nuclear Deterrence Posture [1990]

Kashmir has been a flashpoint since Indian and Pakistani independence in 1947. Many analysts have feared that nuclear weapons could be used if conventional hostilities over Kashmir were to spiral out of control, especially if, as in 1965 Indo-Pakistan conflict

Pakistan again advanced a nuclear deterrent posture in 1990 in the context of a spiralling crisis over the disputed territory of Kashmir, which developed against the backdrop of an acute separatist insurgency in the Indian. Reportedly, New Delhi planned for surgical air strikes against the militant training camps inside Pakistani territory, which prompted Islamabad to assemble a crude nuclear bomb and modify several American supplied F-16 aircrafts for its delivery. The crisis was eventually averted through diplomatic intervention from Washington, but Islamabad firmly believed that Pakistan’s deterrence posture prevented India from carrying out the planned strike. This crisis also marked the emergence of a nascent mutual nuclear deterrence in the Indo-Pakistani context.

Command and Control of Nuclear Deterrence

What did emerge during this period, primarily in the context of the 1986-87 Brasstacks crisis and the 1990 Kashmir episode, was a general notion of nuclear deterrence, which implied that Pakistan would use nuclear weapons to counter India’s nuclear as well as conventional aggression. to build a robust nuclear command structure. However, former Army chief of staff General Mirza Aslam Beg has claimed that the Pakistani leadership realised the necessity of establishing a command structure,

given the tension, mutual mistrust and suspicion between India and Pakistan, it is dangerously tempting for each to launch an attack before being attacked which could escalate to a nuclear level.

Bhutto had established a National Nuclear Command Authority (NNCA) in the 1970s, which institutionalised the nuclear decision-making and assumed the responsibility of developing a nuclear force structure and appropriate alert posture. (‘NNCA Responsible for Safeguarding Nuclear Programme, The News, 2 June 1998).

Pakistan Nuclear Capabilities and Thinking

Most observers (SIPRI Yearbook 1995, Bulletin of Atomic Scientists, 1998) estimate that Pakistan has enough nuclear material (highly enriched uranium and a small amount of plutonium) for 30 to 50 nuclear weapons. Like India, Pakistan is thought to have a small stockpile of nuclear weapons components and can probably assemble some weapons fairly quickly. Pakistan could deliver its nuclear weapons using F-16s (shown above) it purchased from the United States provided the appropriate “wiring” has been added to make them nuclear-capable. In the 1980s, Pakistan moved assiduously to acquire ballistic missile capabilities and now deploys short-range ballistic missiles and a small number of medium-range missiles. AQ Khan, former head of Khan Research Laboratories, maintained that only the medium-range Ghauri missiles would be usable in a nuclear exchange (given fall-out effects for Pakistan of shorter-range missiles). Other observers view the 30 to 50 Hatf2 short-range (300km) missiles (modified Chinese M-11s) as potential delivery vehicles for nuclear weapons. Ghauri missiles (1350 and 2300km), which reportedly are based on the North Korean No-Dong and Taepo-Dong-1, are capable of reaching New Delhi with large payloads.

It is believed that Because of its fears of being overrun by larger Indian forces, Pakistan has rejected the doctrine of no-first-use. In May 2002, Pakistan’s ambassador to the UN, Munir Akram, stated that “We have not said we will use nuclear weapons. We have not said we will not use nuclear weapons. We possess nuclear weapons. So does India ...We will not neutralize the deterrence by any doctrine of no first use

On June 4, 2002, President Musharraf went a step further then his UN ambassador sna stated that: “The possession of nuclear weapons by any state obviously implies they will be used under some circumstances. In recent years, Pakistan apparently has taken steps toward refining command and control of nuclear weapons. In April 1999, General Musharraf announced that the Joint Staff Headquarters would have a command and control arrangement and a secretariat, and a strategic force command would be established. With some experience and the passage of time a degree of sophistication will certainly be introduced in Pakistan’s nuclear doctrine of the first-use of nuclear weapons to provide the government more options in the use of nuclear weapons. This would also avoid unessential collateral damage to cities and other population centres in both countries. The object would be to employ nuclear weapons if attacked yet cause the least civilian casualties and damage to infrastructure.

Refferences

Escalation Control in South Asia,’ in Escalation Control and Nuclear Option in South Asia, eds M. Krepon, R. W. Jones, and Z. Haider, The Henry L. Stimson Center, Washington, D.C., 2004, p. 89.
Z. A. Bhutto, The Myth of Independence, Oxford University Press, Lahore, 1969, p. 153.
B. Chakma, ‘Road to Chagai: Pakistan’s Nuclear Programme, Its Sources and Motivations, Modern Asian Studies, vol. 36, no. 4, 2002, p. 887.
P. Hoodbhoy, ‘Nuclear Deterrence – An Article of Faith,’ The News (Rawalpindi), 17 March 1993.
‘NNCA Responsible for Safeguarding Nuclear Programme, Says Beg,’ The News, 2 June 1998.
S. H. Hasan, ‘Command and Control of Nuclear Weapons in Pakistan,’ Swords and Ploughshares, vol. 9, no. 1, 1994, p. 13.

Images: Title: Nicholson cartoon (www.nicholsoncartoons.com.au), and Reuters

1 Comment

Filed under Al-Qaeda, ASN Technology, Asymmetric Weapons, Ballistic missiles, Barak Obama, Brass Tacks Crisis, Bulletin of Atomic Scientists, Centre for Strategic and Budgetary Assessments (CSBA), China, China Defence, Chinease Defence, Chinese M-11, CIA, Cold War, Current Affairs, Dr A Q Khan, Drone Attacks Pakistan, F-16, Fifth Generation Combat Aircraft, Foreign Office Pakistan, General Pervez Mushuraf, Ghauri, Hatf2, India, India Special Weapons, Iran, ISI, Islamabad, Israel, Joint Staff Headquarters, Kashmir Conflict, Kuldip Nayar, Lockheed Martin, Lockheed martin F-16, Mirza Aslam Baig, Muslim World, Myth of Independence, National Nuclear Command Authority, NATO, New Delhi, NNCA Pakistan, No-Dong, Northa Korea, Nuclear Doctrine, Nuclear Security Summit 2010, Operation Brass Tacks, Pak-Af, Pakistan, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Chief of Army Staff, Pakistan Defence, Pakistan-Afghnistan Border, Pakistan-China, Pakistan-India Wars, President Musharraf, Quetta, Rao Qamar Suleman, S-300 Missiles, Safeguarding Nuclear Programme, shorter-range missiles, Sindh, South Asia, Taepo-Dong-1, The wilds of Waziristan, U.S Policy on Pakistan and Afghanistan, United Nations, US Department of Defense, Weapons of Mass Destruction, WMDs, Zulfikar Ali Bhutto

Russia Sells; China Clones

Today, Russia's military bonanza is over, and China's is just beginning.

China and America are bound to be rivals, but they do not have to be antagonists, Is that really the case? In many ways China has made efforts to try to reassure an anxious world. Leaving politics aside, the rise of chinese millitary power is obvious to all, not only millitary, china is making its way in Civil aviation market as well. But what is interesting in all is, a “Cloning Factor”. After decades of importing and reverse-engineering Russian arms, China has reached a tipping point: It now can produce many of its own advanced weapons—including high-tech fighter jets like the Su-27—and is on the verge of building an aircraft carrier. Not only have Chinese engineers cloned the prized Su-27’s avionics and radar but they are fitting it with the last piece in the technological puzzle, a Chinese jet engine.

At Zhuhai 2010 one thing was clear: China is starting to export much of this weaponry, undercutting Russia in the developing world, and potentially altering the military balance in several of the world’s flash points. China, here laid on its biggest commercial display of military technology—almost all based on Russian know-how. The star guests were the “Sherdils,” a Pakistani aerobatic team flying fighter jets that are Russian in origin but are now being produced by Pakistan and China. Russia’s predicament mirrors that of many foreign companies as China starts to compete in global markets with advanced trains, power-generating equipment and other civilian products based on technology obtained from the West. This is not all, there is an additional security dimension, however: China is developing weapons systems, including aircraft carriers and carrier-based fighters, that could threaten Taiwan and test U.S. control of the Western Pacific. According to West, Chinese exports of fighters and other advanced weapons also “threaten” to alter the military balance in South Asia, Sudan and Iran. But if I am sitting in Iran or Pakistan, the story is otherway round. Interestingly China accounted for 2% of global arms transfers between 2005-2009, putting it in ninth place among exporters, according to the Stockholm International Peace Research Institute (SIPRI). But no other Asian country has sought to project military power—and had the indigenous capability to do so—since Japan’s defeat in 1945.

As the Chinese leaders’ history lesson will have told them, the relationship that determines whether the world is at peace or at war is that between pairs of great powers. Sometimes, as with Britain and America, it goes well. Sometimes, as between Britain and Germany, it does not. There are also implications for U.S. weapons programs. Last year the Pentagon decided to cut funding for the F-22—currently the most advanced fighter deployed in the world—partly on the grounds that China wouldn’t have many similar aircraft for at least 15 years. But then Gen. He Weirong, deputy head of China’s Air Force, announced that Chinese versions of such jets were about to undergo test flights, and would be deployed in “eight or 10 years.” The Defense Intelligence Agency now says it will take China “about 10 years” to deploy stealth fighters in “meaningful numbers.”

J-11: many aviation experts believe AVIC is having problems developing an indigenous engine for the J-11B with the same thrust and durability as the original Russian ones.

Few things illustrate this more clearly than the J-11B (shown below), a Chinese fighter that Russian officials allege is a direct copy of the Su-27, a one-seat fighter that was developed by the Soviets through the 1970s and 1980s as a match for the U.S. F-15 and F-16. Before the early 1990s, Moscow hadn’t provided major arms to Beijing since an ideological split in 1956, which led to a brief border clash in 1969. In 1992 (after collapse of Soviet Union), China became the first country outside the former Soviet Union to buy the Su-27, paying $1 billion for 24. Beijing’s breakthrough came in 1996, when it paid Russia $2.5 billion for a license to assemble another 200 Su-27s at the Shenyang Aircraft Company. The agreement stipulated that the aircraft—to be called the J-11—would include imported Russian avionics, radars and engines and couldn’t be exported. The J-11B looked almost identical to the Su-27, but China said it was 90% indigenous and included more advanced Chinese avionics and radars. Only the engine was still Russian, China said.

Sukhoi 27: The J-11B looked almost identical to the Su-27, but China said it was 90% indigenous and included more advanced Chinese avionics and radars. Only the engine was still Russian

The J-11B presented Russia with a stark choice—to continue selling China weapons, and risk having them cloned, too, or to stop, and miss out on its still lucrative market.many aviation experts believe AVIC is having problems developing an indigenous engine for the J-11B with the same thrust and durability as the original Russian ones. Photographs published recently on Chinese military websites appear to show engines fitted on the J-11B and a modified version—called the J-15—for use on aircraft carriers. The birth of J-15 can be read on my previous post Here Its not just Su-27 that concerns Russians, but also Su-33, a more advanced version of Su-27. The J-11B is expected to be used by the Chinese navy as its frontline fighter, capable of sustained combat over the entire East China Sea and South China Sea. Aircraft carriers and J-15 fighters would further enhance its ability to stop the U.S. intervening in a conflict over Taiwan, and test its control of the Western Pacific. China’s arms exports could have repercussions on regions in conflict around the world. Pakistan inducted its first squadron of Chinese-made fighter jets in February, potentially altering the military balance with India.The potential customer of greatest concern to the U.S. for JF-17 sale, is Iran, which purchased about $260 million of weapons from China between 2002-2009, according to Russia’s Centre for Analysis of the Global Arms Trade. Economist cites, that China and America have one advantage over history’s great-power pairings: they saw the 20th century go disastrously wrong. It is up to them to ensure that the 21st is different.

Detail about china’s rise and Russian arm deal, can be read on this extensive report published in Wall Street Journal, HERE

3 Comments

Filed under Air Show China 2010, Asia's New SAMs, ASN-206/207, ATAK, Aviation, Chengdu Aircraft, China, China Air Force, China Defence, Chinese Defence, CIA, F-22 raptor, Foreign Office Pakistan, Germany, Gulf War, India, Islamabad, J-10, J-11B, JF-17, JF-17 Thunder, Pakistan, Pakistan Air Force JF 17, Pakistan Defence, People Liberation Army, Shenyang J-15, Sherdil, Su-27, Sudan, Sukhoi, Sukhoi Su-33, Taiwan, Xianglong UAV, Zhuhai 2010, Zhuhai Air Show

Pakistan International Airlines – Losses Continue to Flow

Pakistan International Airlines (PIA)’s public relations team seemed to be very active this month. A month started with Russian airspace closure to PIA’s flights – The restriction came at a time when Russia had liberalised its airspace through historic relaxation of its airspace regulations. According to the sources, this was resulted due to PIA’s late move to airspace renewal on-time. Since, Russia is a quickest way to get to Europe, this move offcourse have serious implictaions on ill-fated PIA, who is already suffering badly when it comes to figures. The move will result in 15 to 20 minutes of extra flying time for most of the flights from Pakistan to Europe, the United States and Canada and back and increase the cost of flights. About 80 flights a week using Russian airspace for overflight will be affected.

Getting Figures Right

The state-run airline currently services domestic and international routes with a fleet of Boeing 777, Boeing 747, Airbus A310, Boeing 737 and ATR-42 aircraft. PIA suffered a loss of 135.8 million dollars in the first nine months of the year, according to its third-quarter financial report posted on the airline’s website. Accumulated losses stood at 88 billion rupees (one billion dollars). The national flag-carrier plans to induct 16 new aircrafts, lay off over 4,000 non-essential employees and double its revenue though aggressive marketing in the next five years. Ailing state carrier Pakistan International Airlines (PIA) is asking the government, saddled with its own mounting debt, to write off losses of 1.7 billion dollars to save it from looming bankruptcy – Now this is like putting an extra burden on billion dollar debt government.

Violation of airline safety conduct

PIA was created out of private airline Orient Airways in 1955, just eight years after Pakistan came into existence, and today has a fleet of 40 planes, a combination of Boeing 747s, 777s, 737s, Airbuses and ATR aircraft. Performing well until the 1970s when corruption and overstaffing hit company fortunes, PIA’s reputation was further battered in the 1980s as it failed to maintain its fleet. The airline recently imposed new rules to force pilots to fly on its terms, after a row over working hours and pension benefits led pilots to adopt an unofficial “go slow” protest leading to flight delays. Pilots said they were routinely forced to fly 12 hours per day, two hours more than the civil aviation rules allow, and occasionally for as long as 18 hours. Violation of airline safety conduct is something of a norm to PIA, but its not just PIA, the recent accident of Airblue also rasied the issue to retiring age of Captain and number of flights. To my knowledge of travelling with national flag, PIA operates B777, from New York to Karachi/Lahore – the route in past was operated by B747, who was used to make regular stops at Manchester to pick/drop passengers. This has not only reduced the operating life of the aircraft but also, cabin environemnt was no less than an attraction to newly board passengers like me, who see half of the cabin full of dead bodies. Excessive operation of used jumbos, resulted in 747 ban to European airspace, which finally resulted in grounding these plans. Now same routine is being adapted by B777. Worse of all, I have also travelled in PIA’s A310-300 who marginally meets the distance requirements of 3500 nautical miles distance between Manchester and Lahore.With 9 Boeing 777 in service (both long and extended range) why I had to travel on A310, I simply don’t know, may B777 were busy somewhere else. So far most of the planes operational in PIA including new 777 is active on conventional manual controls – some not even incorportaing the Glass Cockpit technology. Almost any new highly automated aircraft is brought down technologically by PIA engineers. Its not that PIA’s pilots aren’t interested in new technology, its PIA who is not bother to spend on training.

Enterprise Resources Planning (ERP) system

The national flag-carrier plans to induct 16 new aircrafts, lay off over 4,000 non-essential employees and double its revenue though aggressive marketing in the next five years. Under a five-year strategic programme, the PIA plans to acquire an Enterprise Resources Planning (ERP) system and implement it across the organisation to streamline business processes, strengthen controls and introduce financial discipline. An ERP is an integrated computer-based application used to manage internal and external resources including tangible assets, financial resources, materials and human resources. Under the programme, a sound system of internal controls will be established. The management is set to have a zero-tolerance policy for fraud and irregularities. A set of strategies will be implemented to turn around operations and make PIA a sustainable and profitable entity.Growth in revenue will be achieved through induction of new aircraft and expansion of the existing network. The airline also plans to pass on the increase in fuel prices to customers as it believes that the rapid escalation of airline expenditure in the recent past is mainly due to an unprecedented increase in fuel prices. Realising that retention of ageing 747 aircraft means continued increase in maintenance cost, the old aircraft will be phased out. Replacing the ageing 737 aircraft is a priority while the A310 aircraft will be replaced as and when financial resources allow investment. The 737NG or A320 are being considered as replacement. ATRs (short-haul European aircraft) will be acquired to increase frequency and capacity on socio-economic routes. It is planned to retain all types of 777 and ATRs in the fleet beyond 2014. During Haj season one 777 will be acquired on wet lease in each year from 2012 to 2014 when an A310 is also planned to be inducted into the fleet. Operational restructuring and human resource rationalisation is also part of the survival and turnaround plan as overstaffing is one of the PIA’s main problems which involves significant costs, clogs communications channels, diverts management’s attention from key airline issues and makes job responsibilities more obscure.

Enterprise Resources Planning (ERP) – if implemented it may serve the purpose, but I must point out that success of ERP implementation highly relies on investment in training (for IT personnel) as well as the coporate policy protection of the data, as well as controlling the way it is been used under ERP. I see this as a big transition, so big that I fear of the PIA implementation and data protection under ERP system. The blurring of company boundaries can cause problems in accountability, lines of responsibility, and employee morale. Furthermore, Once a system is established, switching costs are very high for any partner (reducing flexibility and strategic control at the corporate level).

Many have blamed privatisition and years of bad planning for the fate of PIA, it is actually the years of corruption, nepotism, bad management and poor planning, that is truely responsible for the loss the airline is suffering today.

1 Comment

Filed under Airbus A310-300, Boeing, Boeing 737 next generation, Boeing 777, Boeing 787, Engineering, Flight Global, Flight Simulation, Foreign Office Pakistan, Global Aviation, Islamabad, Manchester, Ministry of Defence Pakistan, Orient Airways, Pakistan, Pakistan Aeronautical Complex, Pakistan Defence, Pakistan International Airlines

Gurdians of Islamic Skies: Iran’s Claim to Soviet S-300 missile Replication

It was not a long ago when Iran kicked off one of its periodic air defense exercise, in order to protect their nuclear sites. Started on 16th November, the exercise lasted five days and featured Iran’s elite Islamic Revolutionary Guards Corps (IRGC) and its paramilitary Basij forces joining in. Interestingly, The monitoring network of Iran’s air defense forces has discovered 194 previously unknown flying routes outside the country’s airspace, not only that Iranian Air Defense Forces has identified 1,612 flying routes (4 unknowns within the countary) inside the country, some are currently used by countary’s civilian airline industry. This identification resulted, during Iran’s Air Defence and Missile System tests, conducted same week. This air defence exercise was named Defenders of the Sky of Vellayat III

Iran has made contradictory claims about its plans for an S-300 substitute, a missile Iran was supposed to buy from Russia who made an abrupt about-face on a big U.S. priority, two months ago. S-300 is highly advanced anti-aircraft missile system. It’s easy to see why the Iranians want the S-300. The current anti-aircraft material they purchased from Russia is the TOR M-1, which is good for shooting down airplanes, helicopters or missiles from about 10 kilometers away. But the S-300 is a serious upgrade: it’s what the Soviets used during the last decade of the Cold War to protect its key installations from NATO cruise missiles and bombers. Versions developed in the late 1990s have a range of 200 kilometers and can even take out some ballistic missiles. Russia sold 29 Tor-M1 missile systems to Iran under a $700 million (£386 million) in 2008 (contract signed in 2005). When this latter deal was accomplished in 2008, defence analyset Dan Goure commented:

“If Tehran obtained the S-300, it would be a game-changer in military thinking for tackling Iran. That could be a catalyst for Israeli air attacks before it is operational,”

Russia has been Iran’s big-power benefactor on matters technical and military for the past decade-plus. But over the past year, it’s been pulled in different directions by the U.S.’s “Reset” strategy, an aggressive diplomatic push to hug Russia tightly. When Russia backed off, Iran now has a very serious message for Russia and the world The Iranian Defense Ministry announced that Tehran plans to produce long-range air defense missiles without foreign aid. Iran has made similarly bold claims about a new advanced and indigenously-built air defense radar. It announced last month that it was building an upgraded air defense radar system with a 3,000km range, an apparent improvement over its older 400km range systems.

“If the maximum range of our radar systems was 400km in the past, we have this good news for the people that we have started making a radar system covering an area with the radius of 3,000km which can identify all objects flying around the country at law altitudes,” Commander of Khatam ol-Anbia Air Defense Base Brigadier General Ahmad Miqani. The Iranian Defense Ministry had announced in October that the country has succeeded in improving the range of its mid-range Mersad missile defense system. Also, Iranian Defense Minister Brigadier General Ahmad Vahidi announced at the same time that the country’s radar systems are capable of detecting every target in the air.

Iran SAMs - Photo Mehr

Referring to the production of radar equipment and instruments inside the country, he thre nother bold statement saying that:

“Iran has gained self-sufficiency in producing radar systems and it is no more dependant on any foreign countries in this ground”.

Damn Uncle SAM

Why on this plant S-300 is so important, where it has never fired a missile in a real conflict? Well to be honest this what its engineers say. The S-300 is a series of Russian long range surface-to-air missile systems (SAM). The S-300 system was developed to defend against aircraft and cruise missiles for the Soviet Air Defence Forces. Subsequent variations were developed to intercept ballistic missiles. Although never fired the missiles did got a chance to breath in open air, when they were deployed by Soviet Union in 1979, designed for the air defense of large industrial and administrative facilities, military bases, and control of airspace against enemy strike aircraft. The S-300 is regarded as one of the most potent anti-aircraft missile systems currently fielded. Its radars have the ability to simultaneously track up to 100 targets while engaging up to 12. S-300 deployment time is five minutes. An evolved version of the S-300 system is the S-400 – a missile capable of cruising at Mach 12 with the range of 400km. The S-400’s NATO reporting name is SA-21 Growler, and the system was previously known as S-300PMU-3. It overshadows the capabilities of the other systems from the S-300 series. Russia operates 5 battalions as of 2010 and will arm more before 2020. Although various variants of S-300 emerged, though they were all evolved from three basic configurations S-300P, S-300V, and S-300F. Latter is the naval version of S-300P with the range of 7–90 km and maximum target speed up to Mach 4 while engagement altitude was reduced to 25-25,000 m (100-82,000 ft). S-300P system broke substantial new ground, including the use of a phased array radar and multiple engagements on the same Fire-control system (FCS). Nevertheless, it had some limitations. It took over one hour to set up this semi-mobile system for firing and the hot vertical launch method employed scorched the Transporter erector launcher (TEL). Finally S-300V (quite different from other two of its catagory) designed to act as the top tier army air defence system, providing a defence against ballistic missiles, cruise missiles and aircraft, replacing the SA-4 ‘Ganef’. The “GLADIATOR (S-300V NATO Reporting name)” missiles have a maximum engagement range of around 75 km (47 miles) while the “GIANT” missiles can engage targets out to 100 km (62 miles) and up to altitudes of around 32 km (100,000 ft). In both cases the warhead is around 150 kg (331 lb).

A detailed specification both both S-300 and S-400 classes can be accessed from Asia’s New SAMs Though in nutshell The original warhead weighed 100 kg (220 lb), intermediate warheads weighed 133 kg (293 lb) and the latest warhead weighs 143 kg (315 lb). All are equipped with a proximity fuze and contact fuze. The missiles themselves weigh between 1,450 kg (3,200 lb) and 1,800 kg (3,970 lb). Missiles are catapulted clear of the launching tubes before their rocket motor fires, which can accelerate at up to 100 g (1 km/s²). They launch straight upwards and then tip over towards their target, removing the need to aim the missiles before launch. The missiles are steered with a combination of control fins and through thrust vectoring vanes. The sections below give exact specifications of the radar and missiles in the different S-300 versions. It should be noted that since the S-300PM most vehicles are interchangeable across variations.

Awesome Iran – Diplomatically Isolated

Iran another contender in arms race

Iran said it successfully test-fired what it claims is an upgraded S-200 surface-to-air missile. The S-200, developed by the Soviet Union during the Kennedy administration and designed to hit big, fat slow-moving bombers, had been magically souped-up, according to the Iranians, to be just as powerful as the 20 years more advanced S-300 missile system. The interesting point to take out from this is that, Iran managed to achive this within span of few months. I can certainly understand the westeran fear over Iran’s S-300 deal. Although Tehran claimed that it has developed a replica of S-300, I personally doubt Iran’s ability to duplicate the Russian missile system. It may be the case that Iranian authorities misspelled S-300 instead of S-200, if not that I am eager to see the new replica. It’s all the more bizarre because Iran actually does have a number of credible unconventional options at its disposal that should make anyone think twice about attacking its nuclear facilities. It’s right next door to America’s wars in Iraq and Afghanistan and could create a lot of headaches for the United States in the event of an attack.

1 Comment

Filed under Afghanistan, AGm-113 Hellfire, Air Defence, Asia's New SAMs, Ballistic missiles, Basij forces, Black Ops, Cold War, Fire-control system, Foreign Office Pakistan, GLADIATOR, Global Aviation, Global Times, Iran, Iran's Air Defence and Missile System, Iranian Defense Ministry, ISI, Islamabad, Islamic Revolutionary Guards Corps, Israel, Muslim World, NATO, Pakistan, Pakistan Defence, S-300 Missiles, S-400 missiles, SD-10 Missile, Soviet Union, surface-to-air missile, Tehran, War on Terror