Category Archives: S-400 missiles

Air Power Pakistan: Implementations of Network Centric Warfare

'I am well aware of Air developments in other countries and my Government is determined that the Royal Pakistan Air Force will not lag behind. M A Jinnah

This post is an effort to understand and articulate the power of information superiority in warfare from a Joint perspective. War is a product of its age. The tools and tactics of how we fight have always evolved along with technology. Often in the past, military organizations pioneered both the development of technology and its application. Such is not the case today. The advant of Information Technology, has changed the meaning of war. As I highlighted in some of my previous posts War today is no more same as war few decades back – here I am pointing to Electronic Warfare, Network Centric Warfare, Use of Artificial Intelligence in Battlefield, Unmanned Vehicles and so on. This post however, is to see how Network Centric Warfare (NCW) embodies the characteristics of the Information Age; and to identify the challenges in transforming this concept into a real operational capability. For more on Electronic Warfare and Artificial Intelligence see my following posts: Intellegent Warfare Electronic Support Measures and War Toys – Artificial Intelligence on Battlefield. I intend to show that How Well did Pakistan Air Force understands the Network Centric Warfare.

Society has changed. The underlying economics and technologies have changed. So we should be surprised if Global forces’ did not. For nearly 200 years, the tools and tactics of how we fight have evolved with military technologies. Now, fundamental changes are affecting the very character of war. Who can make war is changing as a result of weapons proliferation and the fact that the tools of war increasingly are marketplace commodities. By extension, these affect the where, the when, and the how of war. In 1998, U.S Navy published a report on the origin of Network Centric Warfare and how U.S Society and Business has adapted it. This report pointed out the transition from “platform-centric warfare” to “network-centric warfare”: It further goes on and suggested:

Network-centric warfare and all of its associated revolutions in military affairs grow out of and draw their power from the fundamental changes in American society. These changes have been dominated by the co-evolution of economics, information technology, and business processes and organizations, and they are linked by three themes:

– The shift in focus from the platform to the network
– The shift from viewing actors as independent to viewing them as part of a continuously adapting ecosystem
– The importance of making strategic choices to adapt or even survive in such changing ecosystems

These changes in the dimensions of time and space are increasing the pace of events, or operating tempo, in many different environments. Responsiveness and agility are fast becoming the critical attributes for organizations hoping to survive and prosper in the Information Age. With little observation of what is going around in Business, and civil sectors I don’r think that it is wrong to say that – the changes these affecting these organisations due to the advant of Information Technology are driven by changes in the environments they operate and capabilities they have in their disposal. Similarly, for military battle space has changed and become a case of Information Superiority. So what exactly is NCW and Why networking?

Network Centric Warfare

From a broad perspective the introduction of networking techniques into warfighting systems is the military equivalent of the digitisation and networking drive we observed in Western economies between 1985 and 1995. Military networking, especially between platforms, is far more challenging than industry networking due to the heavy reliance on wireless communications, high demand for security, and the need for resistance to hostile jamming. The demanding environmental requirements for military networking hardware are an issue in their own right.A high speed network permits error free transmission in a fraction of the time required for voice transmission, and permits transfer of a wide range of data formats. In a more technical sense, networking improves operational tempo (optempo) by accelerating the Observation-Orientation phases of Boyd’s Observation-Orientation-Decision-Action (OODA) loop. Identified during the 1970s by US Air Force strategist John Boyd, the OODA is an abstraction which describes the sequence of events whihc must take place in any military engagement. The opponnent must be observed to gather information, the attacker must orient himself to the situation or context, then decide and act accordingly.

Observation-Orientation-Decision are all about gathering information, distributing information, analysing information, understanding information and deciding how to act upon this information. The faster we can gather, distribute, analyse, understand information, the faster we can decide, and arguably the better we can decide how and when to act in combat. Networking is a mechanism via which the Observation-Orientation phases of the loop can be accelerated, and the Decision phase facilitated. Well implemented networking can contribute to improved effectiveness in other ways. One such technique is ‘self synchronisation’ which permits ‘directive control’. Rather than micromanage a warfighting asset with close control via a command link tether, warfighters are given significant autonomy, defined objectives, and allowed to take the initiative in how they meet these objectives.

NCW focuses on the combat power that can be generated from the effective linking or networking of the warfighting enterprise. It is characterized by the ability of geographically dispersed forces (consisting of entities) to create a high level of shared battlespace awareness that can be exploited via self-synchronization. Furthermore, NCW is transparent to mission, force size, and geography. The mathematical bottom line in NCW is a very simple one: networking can permit a significant improvement in operational tempo, where a shortage of targeting information is the bottleneck to achieving a high operational tempo, but networking itself has very little impact on the absolute ability of a force to deliver weapons against targets, that being constrained by the capabilities and number of combat platforms in use.

It can be argued that networking produce its greatest gains in combat effect during battlefied strike and close air support operations, especially against highly mobile and fleeting ground targets. No less interesting are the effects observed in demand for specific types of assets to support networked interdiction and strike operations. Air Power Australia – An Australian Defence THink tank, cites that: Bigger is better in the networked strike game, so much so that a recent discussion piece by US analyst Price Bingham in the ISR Journal predicted the demise of the classical battlefield interdiction tasked fighter-bomber, in favour of larger bombers and UCAVs. This is a direct challenge to the basic rationale for the Joint Strike Fighter family of battlefield interdiction and close air support fighters, and the longer term use of legacy designs like the F-16 and F/A-18 variants. According to those who are in favour of NCW, A key issue for all networking is the Intelligence-Surveillance-Reconnaissance capability supporting it. Networks like all computing systems obey the Garbage-In Garbage-Out rule – without accurate high quality ISR systems feeding the network, it is little more than high speed digital plumbing between platforms, with nothing useful to carry. However, one can equally finds the disadvantage of this In-Out system (i will come on this issue later).

U.S aside, Russia has capitalised on this by aggressively marketing ISR platforms like the A-50 AWACS, digital datalinking products – the Soviets were deeply enamoured of digital air defence networks – and counter ISR systems. The latter include long range AAMs like the R-172, R-37 and Kh-31 variants, as well as airborne and land mobile high power jamming equipment, and very long range SAMs like the S-400 and Imperator series. As the ranges of our sensors and weapons increase and as our ability to move information rapidly improves, we are no longer geographically constrained. Hence, in order to generate a concentrated effect, it is no longer necessary to concentrate forces.

The prerequisite for an NCW capability is the digitisation of combat platforms. A combat aircraft with a digital weapon system can be seamlessly integrated in an NCW environment by providing digital wireless connections to other platforms. Without the digital weapon system, and its internal computers, NCW is not implementable.

The term Network Centric Warfare also carries some baggage. By mistake, some have focused on communication networks, not on warfare or operations where the focus should rightly be.
Networks are merely a means to an end; they convey “stuff” from one place to another and they are the purview of technologists. NCW does not focus on network-centric computing and communications, but
rather focuses on information flows, the nature and characteristics of battlespace entities, and how they need to interact. NCW is all about deriving combat power from distributed interacting entities with significantly improved access to information.

There has been little effort to capitalise on the new technology of ad hoc network protocols, designed for self organising networks of mobile platforms, although the JTRS WNW effort looks promising. The DARPA GLOMO program in the late 1980s saw considerable seed money invested, but did not yield any publicised dramatic breakthroughs. Ad hoc networking remains a yet to be fully explored frontier in the networking domain, one which is apt to provide a decisive technology breakthrough for NCW.

Technological Challegnes

Security and Robustness of transmission, Transmission capacity, Message and signal routing, and Signal format and communications protocol compatibility are some issues concerning NCW. It is essential that dissimilar platforms and systems can communicate in an NCW environment. This problem extends not only to the use of disparate signal modulations and digital protocols, but to the use of partially incompatible implementations of what is ostensibly the same signal modulation or communications protocol.

Global Defence Industry


Most regional nations are now operating, deploying or shopping for Airborne Early Warning & Control (AEW&C) aircraft. Russia is actively marketing digital datalinks, like the TKS-2 and older APD-518, and marketing counter-ISR weapons like the Novator R-172 (KS-172) or Kh-31 series missiles. Russia is also marketing high power jamming equipment, especially pods using Digital RF Memory (DRFM) technology, and there is a good prospect of a Growler-ski based on the Su-32 materialising before the end of the decade.

United States of America

In practical terms, by 2010-2015 regional opponents without AEW&C, long range counter-ISR missiles and jamming pods are likely to be the obliging exception to the rule. US thinking is not surprisingly centred in using F/A-22As to sanitise airspace permitting unhindered use of ISR platforms and networks, and the program to replace the lost capabilities of the EF-111A Raven with the B-52J or EB-52, equipped with high power stand-off jamming equipment to disrupt opposing networks and ISR sensors.

Pakistan Airforce and Network Centric Warfare

NCW must be properly understood before it can be used as a basis for strategic planning decisions. Clearly this was not been the case in many key areas of the Pakistan’s MoD. The situation however changes in 2010.

The Saab 2000 Erieye AEW&C, developed for the Pakistan Air Force, on display

JF-17 operation, new batch of F-16, inclusion of Saab 2000 erieye, and ZDK 03 AWACS aircarfts are all part of step taken by Pakistan Air Force, to meet the NCW and Electronic Warfare requirements, which indeed are less than none. SAAB signed an 8 billion kronor provisional contract to supply 6 Saab 2000 erieye to Pakistan, which was finalized in June 2006 at four aircraft, one of which has been delivered to date. This aircraft (shown above) incorporates the Erieye Radar System, and Airborne Early Warning and Control System (AEWCS) and is based on based on the Active Electronically Scanned Array (AESA) radar.

The Erieye AEW&C mission system radar is an active, phased-array, pulse-Doppler sensor that can feed an onboard operator architecture or downlink data (via an associated datalink subsystem) to a ground-based air defence network. The system employs a large aperture, dual-sided antenna array housed in a dorsal ‘plank’ fairing. The antenna is fixed, and the beam is electronically scanned, which provides for improved detection and significantly enhanced tracking performance compared with radar-dome antenna systems. Erieye detects and tracks air and sea targets out to the horizon, and sometimes beyond this due to anomalous propagation — instrumented range has been measured at 450 km. Typical detection range against fighter-sized targets is approximately 425 km, in a 150° broadside sector, both sides of the aircraft. Outside these sectors, performance is reduced in forward and aft directions. Other system features include: Adaptive waveform generation (including digital, phase-coded pulse compression); Signal processing and target tracking; Track While Scan (TWS); Low sidelobe values (throughout the system’s angular coverage); Low- and medium-pulse repetition frequency operating modes; Frequency agility; Air-to-air and sea surveillance modes; and Target radar cross-section display.

Pakistan Air Force JF-17

JF-17 comprises of two VHF/UHF radios, one of them having capacity for data linking. The data link can be used to exchange data with ground control centres, AWACS/AEW aircraft and other combat aircraft also equipped with compatible data links. The ability to data link with other “nodes” such as aircraft and ground stations allows JF-17 to become part of a network, improving the situational awareness of the pilot as well as other entities in the network.

The JF-17 has a defensive aids system (DAS) made up of various integrated sub-systems. A radar warning receiver (RWR) gives data such as direction and proximity of enemy radars to the pilot and electronic warfare (EW) suite, housed in a fairing at the tip of the tail fin for greater coverage, that interferes with enemy radars. The EW suite is also linked to a missile approach warning (MAW) system to help it defend against radar-guided missiles. The MAW system uses several optical sensors mounted on the airframe (two of which can be seen at the base of the vertical stabiliser) that detect the rocket motors of missiles and gives 360 degree coverage. The DAS systems will also be enhanced by integration of a self-protection radar jamming pod which will be carried externally on one of the aircraft’s hardpoints. Electronic support measures and defensive aids are used extensively to gather information about threats or possible threats. DAS Systems – They can be used to launch devices (in some cases automatically) to counter direct threats against the aircraft. They are also used to determine the state of a threat and identify it. To my knowledge it uses KJ8602A Airborne Radar Warning Receiver. The KJ8602A airborne radar warning receiver (RWR) is designed to detect incoming radar signals; identify and characterise these signals to a specific threat; and alert the aircrew through the cockpit video/audio warning. The KJ8602A features several external antennae mounted on the vertical fin tip, both wingtips, and underneath the forward fuselage. Once the hostile radar signal is detected, the KJ8602A analyses those received signals and identify the signal sources according to the stored emitter identification data (EID), and alerts the pilot. The system can also automatically trigger the chaff/flare dispenser or other onboard ECM systems to counter the incoming threats.

The JF-17s in service with the PAF are fitted with an Italian Grifo S-7 multi-track, multi-mode, pulse Doppler radar radar. The radar has 25 working modes and a non-break-down time of 200 hours, and is capable of “look-down, shoot-down”, as well as for ground strike abilities. Alternatively, the aircraft can be fitted with the Thales RC400, GEC Marconi Blue Hawk, Russian Phazotron Zemchug/Kopyo, and Chinese indigenous KLJ-7 developed by Nanjing Research Institute of Electronics Technology (NRIET). The first 42 production aircraft currently being delivered to the Pakistan Air Force are equipped with the NRIET KLJ-7 radar. In December 2010, Pakistan Air Force’s Air Chief Marshal Rao Qamar Suleman announced that KLJ-7 radar will be built at Pakistan Aeronautical Complex (PAC), in Kamra, north of Islamabad

The KLJ-7 uses a mechanically-steered slotted array antenna and bears similarities with the various Russian radars imported in the 1990s. Russian radar design houses Phazotron and NIIP had worked closely in the past with the Chinese radar design bureaus and provided technical assistance as well as operational models of Russian-made radar sets that were used as benchmarks in the process of these Chinese firms developing their own design. Up to 20 units of the Phazotron Zhemchoug ('Pearl) radar were imported in the mid-1990s for evaluation along with 2 units of Phazotron (NIIR) RP-35, which is the upgraded version of the Zhemchoug

The KLJ-7 has multiple modes, both beyond-visual-range (BVR) and close-in air-to-air modes, ground surveillance modes and a robust anti-jamming capability. The radar can reportedly manage up to 40 targets, monitor up to 10 of them in track-while-scan (TWS) mode and simultaneously fire on two BVR targets. The detection range for targets with a radar cross-section of 5 square meters is stated to be ≥105 km (≥85 km in look-down mode). Surface sea targets can be detected at up to 135 km. It has been reported that KLJ-7 also has modes to support a range of NATO weaponry, including the Raytheon AIM-9 Sidewinder short-range and AIM-7 Sparrow medium-range air-to-air missiles. The RADAR operates at Ground Moving Target Indication/Ground Moving Target Track (GMTI/GMTT), Range While Search (RWS), Sea Single Target Track (SSTT), Synthetic Aperture Radar (SAR), Doppler Beam Sharpening (DBS), Situational Awareness Mode (SAM), Velocity Search (VS) and many other. Pakistan’s move to develop these RADARS at home, and extending their capibility to next level will surely provide them an advantage over its compitators.

Four Chinese ZDK-03 AEW&C aircraft have also been ordered. Which are PAF-specific version of the KJ-200, incorporating a Chinese AESA radar similar to the Erieye mounted on the Shaanxi Y-8F600 transport aircraft. Currently PAF’s No.24 Blinders squadron operates three Dassault Falcon 20 aircraft in the ELINT (Electronic signals intelligence) and ECM (Electronic countermeasures) roles. Former refers to intelligence-gathering by use of electronic sensors. Its primary focus lies on non-communications signals intelligence. The data gathered are typically pertinent to the electronics of an opponent’s defense network, especially the electronic parts such as radars, surface-to-air missile systems, aircraft, etc. ELINT can be used to detect ships and aircraft by their radar and other electromagnetic radiation; commanders have to make choices between not using radar (EMCON), intermittently using it, or using it and expecting to avoid defenses. ELINT can be collected from ground stations near the opponent’s territory, ships off their coast, aircraft near or in their airspace, or by satellite. However, ECM, are a subsection of electronic warfare which includes any sort of electrical or electronic device designed to trick or deceive radar, sonar or other detection systems, like infrared (IR) or lasers. It may be used both offensively and defensively to deny targeting information to an enemy. The system may make many separate targets appear to the enemy, or make the real target appear to disappear or move about randomly. It is used effectively to protect aircraft from guided missiles (refer to my precvious post for ECM and ESM).

The Shaanxi Y-8 or Yunshuji-8 aircraft is a medium size medium range transport aircraft produced by Shaanxi Aircraft Company in China, based on the Soviet Antonov An-12.

KJ-200, incorporates an Active Electronically Scanned Array (AESA) Radar (aka active phased array radar). This radar possess many advantages over conventional passive scanned radar, one is that the different modules can operate on different frequencies. Additionally, the solid-state transmitters are able to broadcast effectively at a much wider range of frequencies, giving AESAs the ability to change their operating frequency with every pulse sent out. AESAs can also produce beams that consist of many different frequencies at once, using post-processing of the combined signal from a number of transmitter-receiver modules (TRMs) to re-create a display as if there was a single powerful beam being sent. AESAs are so much more difficult to detect, and so much more useful in receiving signals from the targets, that they can broadcast continually and still have a very low chance of being detected. This allows the radar system to generate far more data than if it is being used only periodically, greatly improving overall system effectiveness. Similar type is featured on F-22 and F/A 18 Super Hornet.

Concluding Remarks

Critics of NCW argue that system is prone to Chaos, and thus link the system with Chaos Theory – to some extent they are right, but as I have mentioned earlier, system integration in NCW is no easy, and prone to may fatel error if neglected. As far as PAF analysis is concerned, I have treid my best to include what I could and keep it simple. However, I will include the advances from Navy side some other time. Also, if reader is interested to explore more about the Network Centric Warfare, please refer to US DoD Report to Congress and Thought Systems and Network Centric Warfare

Leave a comment

Filed under Chaos Theory, Dopplar Radar, Electronic Counter Measures, EMCON, Erieye radar, F-22, Foreign Office Pakistan, GMTI/GMTT, KJ8602A, KLJ-7, Network Centric Warfare, OODA, Pak-Af, Pakistan, Pakistan Aeronautical Complex, Pakistan Air Force, Pakistan Air Force F16, Pakistan Air Force JF 17, Pakistan Chief of Army Staff, Pakistan Defence, Pakistan Navy, Pakistan-China, Pakistan-India Wars, RADAR, Rao Qamar Suleman, RC400, Russia, S-300 Missiles, S-400 missiles, Saab 2000 Erieye, Saudi Arabia, Saudi Aviation, U.S DoD, ZDK 03

Intellegent Warfare: Electronic Support Measures and Application of HARM Missile

USS KITTY HAWK (CV 63), At Sea (November 9, 2005) – Aviation Ordnanceman prepare to load a CATM-88 Harm missile onboard the USS Kitty Hawk (CV-63). While at sea, Kitty Hawk and Carrier Strike Group 5 will be participating in an annual exercise with the Japanese Maritime Self Defense Force. Currently underway in the western Pacific Ocean, Kitty Hawk Carrier Strike Group demonstrates power projection and sea control as the Navy's only permanently forward-deployed aircraft carrier strike group, operating from Yokosuka, Japan. U.S. Navy photo by Photographer’s Mate 3rd Class (AW) Jonathan Chandler.

After writing few posts discussing the technological influence on defence stratagies of different nation, this time I thought to go slightly technical. A reader may use this information as an extension of my discussion on Electronic Warfare – Electronic Warfare Operations Warfare has always been conducted by adversaries who have been at great pains to understand their enemy’s strengths and weaknesses in order to minimise the risk to their own forces and territory. The detection and interception of messages and the efforts to deceive the enemy have long been the task of the ‘secret service. As methods of communication developed, so too did methods of interception become more effective. Radar has developed from a mere detection mechanism to a means of surveillance and guidance. This post is focuses on gathering information on immediate threats which is performed by Electronic Support Measures (ECM)

MH-53 Pave Low helicopters prepare to take off for their final combat mission on Sept. 27, 2008, in Iraq. The MH-53, the largest and most technologically advanced helicopter in the Air Force with a record dating back to the Vietnam War, was retired from the Air Force inventory on Sept. 30, 2008

Electronic Warfare (EW) planning requires a broad understanding of enemy and friendly capabilities, tactics, and objectives. Employment of EW assets must be closely integrated into, and supportive of, the commander’s overall planning effort. This planning requires a multidisciplined approach with expertise from operations (ground, airborne, space), intelligence, logistics, weather, and information. Application of this sort of EW planning and employment was seen in Operation Desert Storm in 1991. three US Air Force MH-53J PAVE LOW helicopters (shown above) led nine US Army AH-64 Apache helicopters across the Saudi Arabia-Iraq border to attack two Iraqi early warning radar sites. Taking down these two sites opened the door for attacks across Iraq by F-117s, other coalition aircraft and Tomahawk missiles (shown below).

Block IV Cutaway - Raytheon

After the F-117s and cruise missiles came conventional aircraft. From 0355L to 0420L (H+55 to H+1:20) large numbers of USAF, USN, USMC, RSAF, and RAF aircraft smashed Iraqi air defenses and fields from H-3, an airfield located in western Iraq, to Ahmed Al Jaber, an airfield in occupied Kuwait. Two packages of aircraft, one a USN package from the Red Sea carriers and the other a USAF package from the south pointed directly at Baghdad. These “gorilla” packages were intended to seem threatening enough to force the Iraqis to hurl their air resources in defense. Air Force ground-launched BQM-34 and Navy tactical air-launched decoys (TALD) mimicked the radar return of conventional aircraft to further arouse Iraqi radar operators, many already confused by the absence of central control from Kari. Finally, radar-jamming aircraft radiated blanketing electronic emissions that drove the Iraqi radar operators to go to full power in an attempt to break through the interference. Then, the two incoming coalition flights revealed their true nature and pounced in a shrewd and devastating ruse.

The newest upgrade is a joint venture by the Italian Ministry of Defense and the US Department of Defense: the AGM-88E Advanced Anti Radiation Guided Missile (AARGM), produced by Alliant Techsystems.

What was unique here that, instead of bomb-carrying fighter-bombers, they were radar-killing electronic warriors carrying AGM-88 high-speed antiradiation missiles (HARMS) designed to home in on SAM and AAA radar (shown above). The AGM-88 High-speed Anti-Radiation Missile (HARM) is a tactical, air-to-surface missile designed to home in on electronic transmissions coming from surface-to-air radar systems. Originally developed by Texas Instruments (TI) as a replacement for the AGM-45 Shrike and AGM-78 Standard ARM system. Production was later taken over by Raytheon Corporation (RAYCO) when they purchased TI’s defense business. The AGM-88 can detect, attack and destroy a radar antenna or transmitter with minimal aircrew input. The proportional guidance system that homes in on enemy radar emissions has a fixed antenna and seeker head in the missile’s nose. A smokeless, solid-propellant, dual-thrust rocket motor propels the missile at speeds over Mach 2. HARM, a Navy-led program, was initially integrated onto the A-6E, A-7 and F/A-18 and later onto the EA-6B. USAF F-4G Wild Weasels alone expended dozens of HARMS in twenty minutes, while USN/USMC F/A-18s fired one hundred for the night. HARMS filled the air over Baghdad, the site of over one-half of Iraq’s SAM and AAA batteries. Foolishly, the Iraqis did not turn off their radars, even when the HARMS fireballed in their midst; as one USAF flight leader averred, ‘the emitters came on and stayed on for the entire flight of the missiles.’ This deadly surprise not only destroyed many Iraqi radars, it also terrified their operators. For the rest of the war, they showed great reluctance to use radar and often chose to launch their SAMs with optical or even no guidance.

High-speed Anti-Radiation Missile (HARM) – A Little Overview

The initial HARM attack and the F-117 bombings of the Kari system left Iraq’s integrated air defense system shattered, opening up the country so completely that, within days, coalition air-to-air tankers regularly operated in Iraqi airspace. Other non-stealthy aircraft pummeled Iraqi airfields. An anti-radiation missile (ARM) is a missile which is designed to detect and home in on an enemy radio emission source. Typically these are designed for use against an enemy radar, although jammers and even radios used for communication can also be targeted in this manner. This sort of weapons are key to EW inventory. The word “Radiation” here refers to Electromegnetic radiation, not nuclear. The missile is the direct descendant of the Shrike and Standard ARM missiles used in Vietnam. Most ARM designs to date have been intended for use against ground-based radars. Commonly carried by specialist aircraft in the SEAD (Suppression of Enemy Air Defense) role (known to the USAF as “Wild Weasels”), the primary purpose of this type of missile is to degrade enemy air defenses in the first period of a conflict in order to increase the chances of survival for the following waves of strike aircraft. They can also be used to quickly shut down unexpected SAM sites during a raid. Aircraft which fly with strike aircraft to protect them from enemy air defences often also carry cluster bombs and are known as a SEAD escort. The cluster bombs can be used to ensure that after the ARM disables the SAM system’s radar, the command post, missile launchers, and other components or equipment are also destroyed to guarantee the SAM site stays down.

The R-27 is manufactured in infrared-homing (R-27T), semi-active-radar-homing (R-27R), and active-radar-homing (R-27AE) versions, in both Russia and the Ukraine. The R-27 missile is carried by the Mikoyan MiG-29 and Sukhoi Su-27 fighters, and some of the later-model MiG-23MLD fighters have also been adapted to carry it.

The above account of the First Night of Operation Desert Storm was taken from the Decisive Force: Strategic Bombing in the Gulf War by Richard G. Davis. More recently, air-to-air ARM designs have begun to appear, notably the Russian Vympel R-27P. Such missiles have several advantages over other missile guidance techniques; they do not trigger radar warning receivers (conferring a measure of surprise), and they can have a longer range (since battery life of the seeker head is the limiting factor on the range of most active radar homing systems).

Electronic Support Measures

Technically ESM consists of a collection of senstive antennas designed to detect signals in different frequency bands. Often these antennas are grouped at aircraft’s wing tip pod, which allows a wide angle view without causing too much obstruction as well as to enable a fix on the signal source to obtain an accurate Dircection of Arrival (DoA) of the signal. An effective ESM system rapidly identifies the signal band and location, and determines the signal characteristics. A signal analyser then examines the signal characteristics to identify the type of transmitter and the level of threat posed. Even the most cursory of analysis can establish whether the emitter is associated with surveillance, target tracking or target engagement. This analysis can compare the signal with known emitter characteristics obtained from an intelligence database or threat library and known signal types confirmed and new emissions identified and categorised. Every signal identification is logged with date, time and intercept coordinates, along with the known or suspected platform type, and the results are stored.

ESm Pods on Nimrod: As well as providing threat information, ESM is used by maritime and battlefield surveillance aircraft as a passive or listening sensor which adds important information to other sensors. It is especially useful when tracking submarines

Signals received by the electronic support measures system may in some cases be analysed instantaneously to produce an identity for the transmitter of each signal received. Pulse width, Pulse amplitude and carrier frequency are few important parameters. The nature of the pulse shape is used to determine the particular type of transmitter. The scan rate and the pattern of the scan also provide invaluable information about the mode of the transmitter. It is possible to detect the antennas changing from scanning mode to lock-on to tracking and hence determine the threat that the transmitting station poses. As well as providing threat information, ESM is used by maritime and battlefield surveillance aircraft as a passive or listening sensor which adds important information to other sensors.

The salient signal characteristics or discriminators identified during the ESM collection and identification process includes: Signal Frequency (this is to detect the radar type), Blip/Scan ratio (to get the estimate for scan rate, sector scan width and radar bandwidth), Scan Rate, Scan Pattern (Search, track, track-while-scan (TWS) and ground-mapping (GM) modes will exhibit particular characteristics), Signal Modulation (Pulse, pulse compression, pulsed Doppler (PD), a continuous wave (CW) and other more sophisticated forms of modulation are indicative of the emitter mode(s) of operation and likely threat level) and finally Pulse Repetition Frequency (PRF).

Technical details as well as the schemetic of the ESM system can found in any dedicated military systems book, however, those who are Interested to explore more, I will strongly recommend Military Avionics Systems by Ion Mior and Allen Seabridge.

The combination of analysis of all these modes of operation and when they are employed either singly or in combination is vital to establishing the likely capabilities and intentions of a threat platform, especially when used in combination with other intelligence information. Electronic Support Measures may be employed at a strategic intelligence-gathering level using an AWACS (airborne early warning and command system) or MPA aircraft to build the overall intelligence picture and electronic order of battle (EOB). Alternatively, such information may be gathered and utilised at a tactical level using radar warning receivers (RWR), whereby information is gathered and used at the strike platform level to enable strike aircraft to avoid the most heavily defended enemy complexes during the mission.

As I mentioned earlier, this (ESM) is one element of Electronic Warfare. This is because the nature of EW warfare and devices used. The operating frequency ranges for radars are usually very broad, and no single system can cover the whole range for transmission or reception. Hence, most communications and radar systems are designed for use in specific bands. These bands are usually designated by international convention. The main role of electronic warfare is to search these radio-frequency bands in order to gather information that can be used by intelligence analysts or by front-line operators. The information gained may be put to immediate effect to gain a tactical advantage on the battlefield; it may be used to picture the strategic scenario in peace time, in transition to war, or during a conflict. It may also be used to devise countermeasures to avoid a direct threat or to deny communications to an enemy. It must also be observed that such tactics are deployed by all sides in a conflict – in other words, the listeners are themselves being listened to.

1 Comment

Filed under AAR Corporation, AARGM, Afghanistan, AGm-113 Hellfire, AGM-154 JSOW, Agusta Westland, Air Defence, Anti-Radiation Missiles, ASN Technology, ASN-229A UAV, Asymmetric Weapons, AWACS, Black Hawk, BQm-34, CIA, Cold War, Direct Energy Warfare, Direct Energy Weapons, Electromagnectic Pulses, Electromagnetic Spectrum, F-117, F/A-18, HARM, Lockheed Martin, Lockheed martin F-16, MH-53, MH-53 Pave, NATO, Navy tactical air-launched decoys, Northrop-Grumman, Operation Desert Storm, People Liberation Army, R-27, RAF Nimrod, RSAF, S-400 missiles, Sea King, SEAD, Sukhoi, Sukhoi PAK-FA, Sukhoi Su-33, surface-to-air missile, TALD, Tommahawk missiles, U.S Marines, US Department of Defense, US Navy, USMC, USS Kitty Hawk, Vietnam War, Wild Weasels

Iran: Prioritizing Sky Defences

Don’t listen to those who speak of democracy. They all are against Islam. They want to take the nation away from its mission. We will break all the poison pens of those who speak of nationalism, democracy, and such things. [Ayatollah Ruhollah Khomeini]

Before the 1979 Islamic Revolution, Iran’s air forces were considered second only to Israel in the Middle East, built up by aid from the country’s then-ally the United States.

GENEVA: World powers held their first meeting in 14 months with Iran over its disputed nuclear programme on Monday (today), sounding out Tehran’s intentions after it claimed to have taken a new step in making fissile material. Just a day ahead of the talks, Tehran raised the stakes by revealing that it had mined and produced its first home-grown batch of uranium yellowcake instead of seeking to import new supplies. On the other hand, In military maneuvers and air shows, Iran has been proudly touting advances in its air forces and defenses, including radar systems, anti-aircraft batteries and new attack and reconnaissance drones. Air superiority is seems to be a new priority for Iran, who is trying to quickly bolster its ability to patrol its skies in the belief that US or Israeli warplanes or missiles could strike its nuclear facilities. For the most part, Iran’s air attack capabilities still depend heavily on domestically modified versions of long-outdated warplanes, including former Soviet MiGs and American F14A Tomcats from the 1970s, and its anti-aircraft batteries and drones.

Taking the air defences further, It was not a long ago when Iran kicked off one of its periodic air defense exercise, in order to protect their nuclear sites. Started on 16th November, the exercise lasted five days and featured Iran’s elite Islamic Revolutionary Guards Corps (IRGC) and its paramilitary Basij forces joining in. Interestingly, The monitoring network of Iran’s air defense forces has discovered 194 previously unknown flying routes outside the country’s airspace, not only that Iranian Air Defense Forces has identified 1,612 flying routes (4 unknowns within the countary) inside the country, some are currently used by countary’s civilian airline industry. This identification resulted, during Iran’s Air Defence and Missile System tests, conducted same week. This air defence exercise was named Defenders of the Sky of Vellayat III. More about S-300 missiles and defence of Islamic skies can be read HERE .

This photo released by the Iranian army, claims to show the launching of a Shahin missile in armed forces war games, outside the city of Semnan about 140 miles (240 kilometers) east of the capital Tehran, Iran, Thursday, Nov. 18, 2010

Still, Iran clearly is trying to close security gaps around nuclear sites – including Iran’s main uranium enrichment lab – and blunt the edge that the Pentagon and Israel gain from drone technology. Iranian commanders now view drones as a critical tool, including to monitor the US 5th Fleet based across the Gulf in Bahrain. Iran’s other military emphasis has been improving its long-range missile program. Washington believes Iran may have obtained advanced missiles from North Korea, known as BM-25, which could extend the strike range for Iran from the known 1,200 miles (1,900 kilometers) to up to 2,400 miles (4,000 kilometers), according to State Department cables obtained by the website WikiLeaks and made public Sunday. Such missiles could hit well beyond Iran’s top regional enemy Israel and into Europe or Russia. Iran restructured its military last year in an effort to improve its air defenses. Supreme Leader Ayatollah Ali Khamenei ordered a new branch to be split off from the air force to deal exclusively with threats to the country’s airspace. Since then, Iran has invested heavily in advances in surveillance and attack drones.

In August, Iranian President Mahmoud Ahmadinejad unveiled the latest addition to the country’s drone fleet: a 13-foot-long (four-meter-long) unmanned aircraft — called the “ambassador of death” — which can carry up to four cruise missiles with a claimed range of 620 miles (1,000 kilometers). At least two other Iranian nuclear scientists have been killed in recent years, one of them in an attack similar to the recent one. Iranian officials said they suspected the assassination was part of a covert campaign aimed at damaging the country’s nuclear program, which the United States and its allies says is intended to build a weapon, a claim Tehran denies. President Mahmoud Ahmadinejad told a press conference that ”undoubtedly, the hand of the Zionist regime and Western governments is involved in the assassination.” But he said the attack would not hamper the nuclear program and vowed that one day Iran would take retribution. ”The day in the near future when time will come for taking them into account, their file will be very thick,” he said.

As far as drones are concerned Iranians has seen what USA has done iin Pakistan and Afghanistan. Many analysts believe a longer-range drone is the logical next step of Iran – who is investing heavily in advances in surveillance and attack drones. What is the purpose of these activities and advances, while still holding onto the outdated militray technology, or is it political to show that they can defend themselves, exert power in the region?

Leave a comment

Filed under AGm-113 Hellfire, AGM-154 JSOW, Anti Aircraft Artillery, Asia's New SAMs, ASN Technology, ASN-229A UAV, ATAK, Ballistic missiles, Drone Technology, Drones, Global Aviation, Global Times, Information Operations, Iran, Iran's Air Defence and Missile System, Iranian Defense Ministry, Iraq, ISI, Islamic Revolutionary Guards Corps, Israel, Pakistan, S-300 Missiles, S-400 missiles, SD-10 Missile, Taliban, Tehran, Terror Free Tomorrow, U.S Marines, UAV, War on Terror

Gurdians of Islamic Skies: Iran’s Claim to Soviet S-300 missile Replication

It was not a long ago when Iran kicked off one of its periodic air defense exercise, in order to protect their nuclear sites. Started on 16th November, the exercise lasted five days and featured Iran’s elite Islamic Revolutionary Guards Corps (IRGC) and its paramilitary Basij forces joining in. Interestingly, The monitoring network of Iran’s air defense forces has discovered 194 previously unknown flying routes outside the country’s airspace, not only that Iranian Air Defense Forces has identified 1,612 flying routes (4 unknowns within the countary) inside the country, some are currently used by countary’s civilian airline industry. This identification resulted, during Iran’s Air Defence and Missile System tests, conducted same week. This air defence exercise was named Defenders of the Sky of Vellayat III

Iran has made contradictory claims about its plans for an S-300 substitute, a missile Iran was supposed to buy from Russia who made an abrupt about-face on a big U.S. priority, two months ago. S-300 is highly advanced anti-aircraft missile system. It’s easy to see why the Iranians want the S-300. The current anti-aircraft material they purchased from Russia is the TOR M-1, which is good for shooting down airplanes, helicopters or missiles from about 10 kilometers away. But the S-300 is a serious upgrade: it’s what the Soviets used during the last decade of the Cold War to protect its key installations from NATO cruise missiles and bombers. Versions developed in the late 1990s have a range of 200 kilometers and can even take out some ballistic missiles. Russia sold 29 Tor-M1 missile systems to Iran under a $700 million (£386 million) in 2008 (contract signed in 2005). When this latter deal was accomplished in 2008, defence analyset Dan Goure commented:

“If Tehran obtained the S-300, it would be a game-changer in military thinking for tackling Iran. That could be a catalyst for Israeli air attacks before it is operational,”

Russia has been Iran’s big-power benefactor on matters technical and military for the past decade-plus. But over the past year, it’s been pulled in different directions by the U.S.’s “Reset” strategy, an aggressive diplomatic push to hug Russia tightly. When Russia backed off, Iran now has a very serious message for Russia and the world The Iranian Defense Ministry announced that Tehran plans to produce long-range air defense missiles without foreign aid. Iran has made similarly bold claims about a new advanced and indigenously-built air defense radar. It announced last month that it was building an upgraded air defense radar system with a 3,000km range, an apparent improvement over its older 400km range systems.

“If the maximum range of our radar systems was 400km in the past, we have this good news for the people that we have started making a radar system covering an area with the radius of 3,000km which can identify all objects flying around the country at law altitudes,” Commander of Khatam ol-Anbia Air Defense Base Brigadier General Ahmad Miqani. The Iranian Defense Ministry had announced in October that the country has succeeded in improving the range of its mid-range Mersad missile defense system. Also, Iranian Defense Minister Brigadier General Ahmad Vahidi announced at the same time that the country’s radar systems are capable of detecting every target in the air.

Iran SAMs - Photo Mehr

Referring to the production of radar equipment and instruments inside the country, he thre nother bold statement saying that:

“Iran has gained self-sufficiency in producing radar systems and it is no more dependant on any foreign countries in this ground”.

Damn Uncle SAM

Why on this plant S-300 is so important, where it has never fired a missile in a real conflict? Well to be honest this what its engineers say. The S-300 is a series of Russian long range surface-to-air missile systems (SAM). The S-300 system was developed to defend against aircraft and cruise missiles for the Soviet Air Defence Forces. Subsequent variations were developed to intercept ballistic missiles. Although never fired the missiles did got a chance to breath in open air, when they were deployed by Soviet Union in 1979, designed for the air defense of large industrial and administrative facilities, military bases, and control of airspace against enemy strike aircraft. The S-300 is regarded as one of the most potent anti-aircraft missile systems currently fielded. Its radars have the ability to simultaneously track up to 100 targets while engaging up to 12. S-300 deployment time is five minutes. An evolved version of the S-300 system is the S-400 – a missile capable of cruising at Mach 12 with the range of 400km. The S-400’s NATO reporting name is SA-21 Growler, and the system was previously known as S-300PMU-3. It overshadows the capabilities of the other systems from the S-300 series. Russia operates 5 battalions as of 2010 and will arm more before 2020. Although various variants of S-300 emerged, though they were all evolved from three basic configurations S-300P, S-300V, and S-300F. Latter is the naval version of S-300P with the range of 7–90 km and maximum target speed up to Mach 4 while engagement altitude was reduced to 25-25,000 m (100-82,000 ft). S-300P system broke substantial new ground, including the use of a phased array radar and multiple engagements on the same Fire-control system (FCS). Nevertheless, it had some limitations. It took over one hour to set up this semi-mobile system for firing and the hot vertical launch method employed scorched the Transporter erector launcher (TEL). Finally S-300V (quite different from other two of its catagory) designed to act as the top tier army air defence system, providing a defence against ballistic missiles, cruise missiles and aircraft, replacing the SA-4 ‘Ganef’. The “GLADIATOR (S-300V NATO Reporting name)” missiles have a maximum engagement range of around 75 km (47 miles) while the “GIANT” missiles can engage targets out to 100 km (62 miles) and up to altitudes of around 32 km (100,000 ft). In both cases the warhead is around 150 kg (331 lb).

A detailed specification both both S-300 and S-400 classes can be accessed from Asia’s New SAMs Though in nutshell The original warhead weighed 100 kg (220 lb), intermediate warheads weighed 133 kg (293 lb) and the latest warhead weighs 143 kg (315 lb). All are equipped with a proximity fuze and contact fuze. The missiles themselves weigh between 1,450 kg (3,200 lb) and 1,800 kg (3,970 lb). Missiles are catapulted clear of the launching tubes before their rocket motor fires, which can accelerate at up to 100 g (1 km/s²). They launch straight upwards and then tip over towards their target, removing the need to aim the missiles before launch. The missiles are steered with a combination of control fins and through thrust vectoring vanes. The sections below give exact specifications of the radar and missiles in the different S-300 versions. It should be noted that since the S-300PM most vehicles are interchangeable across variations.

Awesome Iran – Diplomatically Isolated

Iran another contender in arms race

Iran said it successfully test-fired what it claims is an upgraded S-200 surface-to-air missile. The S-200, developed by the Soviet Union during the Kennedy administration and designed to hit big, fat slow-moving bombers, had been magically souped-up, according to the Iranians, to be just as powerful as the 20 years more advanced S-300 missile system. The interesting point to take out from this is that, Iran managed to achive this within span of few months. I can certainly understand the westeran fear over Iran’s S-300 deal. Although Tehran claimed that it has developed a replica of S-300, I personally doubt Iran’s ability to duplicate the Russian missile system. It may be the case that Iranian authorities misspelled S-300 instead of S-200, if not that I am eager to see the new replica. It’s all the more bizarre because Iran actually does have a number of credible unconventional options at its disposal that should make anyone think twice about attacking its nuclear facilities. It’s right next door to America’s wars in Iraq and Afghanistan and could create a lot of headaches for the United States in the event of an attack.

1 Comment

Filed under Afghanistan, AGm-113 Hellfire, Air Defence, Asia's New SAMs, Ballistic missiles, Basij forces, Black Ops, Cold War, Fire-control system, Foreign Office Pakistan, GLADIATOR, Global Aviation, Global Times, Iran, Iran's Air Defence and Missile System, Iranian Defense Ministry, ISI, Islamabad, Islamic Revolutionary Guards Corps, Israel, Muslim World, NATO, Pakistan, Pakistan Defence, S-300 Missiles, S-400 missiles, SD-10 Missile, Soviet Union, surface-to-air missile, Tehran, War on Terror